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Kurzfassung

Die Selbstlokalisierung und Bewegungsschiatzung gehort zu den Hauptaufgaben ei-
nes unbemannten Luftfahrzeugs (englisch unmanned aerial vehicle, UAV). Durch
diese Fiahigkeiten erlangt ein solches System zu einen Mehrwert, da es ihm er-
moglicht autonom zu agieren. Fiir ein hochstmogliches Maf an Autonomie in jeg-
licher Umgebung soll ein solches System nicht auf externe Referenzsysteme wie
z. B. Satellitennavigationssysteme angewiesen sein. Dies kann mit einem Sensor-
system an Bord eines UAVS, das eine Stereokamera und eine inertiale Messeinheit
(englisch inertial measurement unit, IMU) verbindet, erreicht werden. Ein stereo
visueller-inertialer Odometrie-Algorithmus kann dann die Daten beider Sensoren
zur Bewegungsschétzung fusionieren.

In dieser Arbeit wird vor dem Hintergrund des Anwendungsfalls auf einem
UAV ein solcher Algorithmus entwickelt. Hierzu werden zunéchst Eigenschaften
von Kameras beschrieben, die zur Erklarung benétigt werden. Der hier vorgestell-
te Ansatz verwendet FAST-Merkmale in Kombination mit dem Rotated-BRIEF
Deskriptor und ein Verfahren zum Merkmaltracking, um Bildkorrespondenzen zu
bilden. Auf diesen aufbauend wird dann beschrieben, wie mittels der Losung eines
nichtlinearen Optimierungsproblems eine Bewegungsschéitzung berechnet werden
kann. Im Anschluss hieran werden die Eigenschaften einer IMU und die enge Inte-
gration in das nichtlineare Optimierungsproblem beschrieben. Die in C++ erfolgte
Implementierung des beschriebenen Algorithmus wird dann beziiglich seiner Pra-
zision in der Bewegungsschiatzung mit und ohne Verwendung einer IMU evaluiert.
Abschliefsend wird die Arbeit zusammengefasst und ein Ausblick auf Weiterent-
wicklungsmoglichkeiten gegeben.
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Abstract

Self localization and motion estimation is a major part of an unmanned aerial
vehicle (UAV). Through this capability such a system achieves a major additional
benefit, since it enables the UAV to operate autonomously. For the highest degree
of autonomy in any environment such a system should also not depend on external
reference systems like satellite navigation systems. This can be achieved by a
sensor system on board of the UAV, that consists of a stereo camera and an
inertial measurement unit (IMU). A stereo visual-inertial odometry algorithm can
then fuse the data of both sensors for motion estimation.

In this work a stereo visual-inertial odometry algorithm is developed in context
of application with UAVs. In order to accomplish this, the properties of cameras,
needed by a stereo visual odometry algorithms, are described. The algorithm pre-
sented here uses FAST features in combination with the Rotated-BRIEF descriptor
and an approach for feature tracking in order to obtain image correspondences.
Based on these it is described how it is possible to obtain a motion estimation by
solving a nonlinear motion estimation problem. Subsequently, the properties of an
IMU and the tight integration into an optimization problem are described. The
C-++ implementation of the described algorithm is then evaluated regarding its
precision in motion estimation with and without the use of an IMU. Finally, the
work is summarized and an outlook on possibilities for improvements is given.
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Chapter 1

Introduction

Visual odometry is a technology which is used to estimate the motion of a mobile
system that is equipped with one or more cameras. It analyzes the image streams
of the cameras that depict the changing environment due to motion. During the
analysis of the streams full 6D poses of the camera system between points in time
are estimated. By concatenating these relative poses visual odometry computes a
complete trajectory starting at an initial pose.

Visual odometry with two parallel cameras looking in the same direction is
called stereo visual odometry. Compared to the monocular variant, stereo visual
odometry has the advantage that a metric scale can be recovered. This kind of
motion estimation can be combined with other motion estimation technologies in
order to achieve a higher accuracy. Inertial measurement units (IMU) combine an
accelerometer and a rate-gyroscope that measure linear acceleration and angular
velocity. The combination of a stereo camera, an IMU and an algorithm that
processes the data of both sensors is denoted as a stereo visual-inertial odometry
system. The goal of this combination is to increase the accuracy of the system,
estimating motion more accurately than any of the sensors on its own could. The
main task of this system is to compute its motion over time. Many approaches
additionally estimate a 3D model of the environment in form of a point cloud.
This is due to the fact that it is needed in most approaches to derive the motion.
A benefit of this 3D model is that it can be post processed in order to use it as a
map.

Application areas for this systems can be found in air, ground and under wa-
ter robotics. For the purpose of being fully autonomous, robots should not rely
exclusively on global navigation satellite systems (GNSS) like Galileo, GPS or
GLONASS. The reason for that is that robots are often employed in environments
where GNSS is unavailable, such as in indoor environments. Such an environ-
ment is shown in Figure 1.1, where a quadrotor navigates autonomously through
a corridor. It uses a stereo camera mounted on its top for navigation.
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Figure 1.1: Quadrotor UAV with Stereo Camera Flying Indoor. This image shows a
quadrotor UAV with a stereo camera mounted on its top for indoor navigation. Since
the robot operates inside of a building, no GNSS signals can be received. Instead, the
UAV navigates using the stereo camera.

The tasks of robots often require a precise knowledge about their position and
orientation, enabling them to complete their tasks safely and quickly. This skill
is essential, especially for unmanned aerial vehicles (UAV), since they are very
mobile and often fly long distances. These systems also have limited resources in
terms of payload and energy capacity. Therefore, it is important to develop light
navigation systems with low power consumption. Widely used navigation systems
in ground robotics that are based on 3D laser range finders are often heavier
as well as bigger than visual-inertial systems, decreasing the battery-constrained
flight time when used on UAVs. Additionally, UAVs are often equipped with IMUs
as well as cameras. That makes visual odometry in combination with those sensors
even more interesting for navigation.

During the computation of the relative poses small errors are made, which ac-
cumulate over time and cause the estimated pose to differ more and more from
the true pose as time proceeds. This effect is called drift. Visual odometry algo-
rithms have a strong similarity to visual simultaneous localization and mapping
(V-SLAM) algorithms. Both types of algorithms accumulate relative poses for
motion estimation. The difference is that SLAM algorithms try to minimize the
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drift by potentially taking all the data into account that was previously captured.
This means that a drift can be corrected by a SLAM algorithm at a later point in
time by closing loops. Stereo visual-inertial odometry algorithms do not correct
these accumulated errors afterwards. Only a few stereo visual-inertial odometry
algorithms compute motion by taking images from more than two different points
in time into account. The amount of images is then often limited to a small num-
ber like five images. The advantages of this are mainly a less complex problem
that has to be solved as well as lower computational costs.

1.1 State of the Art

In this section the state of the art in solving the different aspects of visual odometry
is described. First an overview of motion estimation methods for UAVs is given.
Then, the state of the art in landmark detection and processing is described, fol-
lowed by the latest work on image based motion estimation algorithms. Finally,
methods for integrating an inertial measurement unit into the motion estimation
algorithms are introduced. Since visual odometry and V-SLAM algorithms are
very similar and solutions can be transferred between them, also V-SLAM ap-
proaches are partially presented.

Most UAVs fuse the data of many different sensors into a single pose to do
motion estimation. This pose is more accurate than a pose, which can be computed
from a single sensor. Very commonly used sensors are IMUs which are usually
a combination of a gyroscope, an accelerometer, and magnetometer, which are
able to precisely measure the attitude of an UAV at a high. However, position
estimation only based on the data of an IMU is inaccurate | |. Because of
that, their measurements are often fused with the data of other sensors for motion
estimation.

2D laser scanners are often used for localization and mapping with UAVs
| |. They provide a 2D profile of the environment, but since
this proﬁle depends strongly on the pose of the UAV, their navigation and map-
ping capabilities in 3D are limited. To avoid this problem, they are sometimes
actuated or two laser scanners at the same time are used | |. This makes
such a system expensive, heavy and large which is not advantageous for UAVs and
impossible to carry for micro aerial vehicles (MAVs).

Other common sensor combinations are a sensor that measures the distance
from the UAV to the ground, in combination with a ground facing camera. The
distance sensors can be a sonar | | or a laser altimeter for example. Know-
ing the altitude and the attitude of an UAV motion can then be computed with
a metric scale by using an optical flow algorithm in combination with a motion
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model. One advantage of those sensors is that the motion computation can be
done at a high frequency on an embedded device | |-

Motion estimation and localization based on cameras is very common for UAVs
[ , , , , |- In addition to the optical flow ap-
proach, several other algorithmic approaches exist to estimate the motion with
single and multiple cameras. The basic schema of these algorithms is to find cor-
responding image features over subsequent images. From these features the three
dimensional structure of the environment as well as the motion of a moving camera
can be computed. An overview of these structure from motion methods can be
found in Hartley and Zisserman’s standard work Multiple View Geometry | -
The state of the art in feature detection, feature matching, motion estimation as
well as integrating an IMU into these algorithms is given in the following three
paragraphs.

Landmark Detection Most visual odometry algorithms use salient image fea-
tures, which can be redetected in subsequent images with a high probability. In
many cases key points or interest points, which can be found by corner detectors,

are used as image features | , , , |- The Harris corner
detector | | is an older basic corner detector which is still in use by recent
visual odometry algorithms | , |. It examines the structure of the

auto-correlation matrix of an image point. This structure can be analyzed to make
a statement about how good a particular point can be distinguished from others.
The good features to track corner detector by Shi and Tomasi | | is similar to
the Harris corner detector. Both work on the auto-correlation matrix, but differ
in how they interpret it.

Rosten and Drummond developed the Features from Accelerated Segment Test
or also called FAST corner detector | , | which has been used very often
in recent visual odometry approaches | , , , , ,

, , |- This detector makes use of a previously learned
decision tree, which speeds up the computation of corners. Its short computational
time makes it attractive for autonomous robotics with limited computational power
and real time requirements. The ORB corner detector makes use of a modified
FAST corner detector. This corner detector computes FAST features in a scale
space and adds an orientation to the key points. The ORB corner detector is

particularly used by the V-SLAM algorithms ORB-SLAM | | and ORB-
SLAM2 | |-
Geiger et. al. | | presented a filter based corner detector and a filter

based blob detector. The maxima and minima of the filter responses are used as
key points. This approach has been also recently used in | |-
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In order to achieve equally distributed key points over the image, the bucketing

technique | | is used by many visual odometry algorithms | : ,

|. The equal distribution improves the results of the pose computation

which is based on visual landmarks. Bucketing divides an image into equally sized

regions. In each region only the n most distinctive image features are kept for
further processing.

In some artificial environments, such as a white corridor, no texture exist on
which key points can be detected. Some alternative approaches then try to use
lines as features. They can be combined with key points | | or used
without additional features for visual odometry | ) |-

Marker based approaches use artificial markers as landmarks for motion es-
timation | , |. The advantage of such algorithms is that the
landmarks can be detected very reliably. Furthermore an identification number
can be extracted from some markers. This makes it easy to find the same marker
in different images, if multiple markers are used | , |. The disad-
vantage of this approach is that the environment has to be equipped with markers
beforehand.

Matching One approach to find corresponding key points is called matching.
This technique uses two or more sets of key points from different images and
attempts to find corresponding points, avoiding wrong matches. Recent inves-
tigations focused on the matching stage in order to achieve a trajectory recon-
struction with a low drift and high accuracy | , |. Approaches which
find matches between key points often use an descriptor. A descriptor is an n-
dimensional vector of numbers that describes this point. In order to compute a
descriptor, an algorithm processes a region around a key point. Key point descrip-
tors which are often used in visual odometry or V-SLAM are BRIEF | | or
ORB | |. Especially ORB became popular recently due to its application
in ORB-SLAM | | and ORB-SLAM2 | |. Additionally, the popu-
lar key point descriptors SIFT | | and SURF | | that also provide
a blob detector were mentioned in | | to be used for visual odometry. How-
ever, in recent visual odometry approaches they are not used anymore. In order
to find corresponding key points, the distance between feature descriptors is com-
pared. The actual correspondences are then found by exploiting different matching
strategies. The circular matching strategy assumes a feature only to be matched
correctly, if it was matched in a closed circle over stereo image pairs, captured at
subsequent points in time | |. Furthermore, the epipolar geometry of a stereo
camera, which is described for example in | |, is a popular standard approach
to shrink the search space with constraints | , , : |-
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Also similarity measures like the normalized cross correlation | ;
| and the sum of absolute differences | | are used by
visual odometry and V-SLAM approaches. Cvisi¢ and Petrov1c | | make use
of both measures in their matching strategy.
Instead of detecting key points in two images and matching them, key points
can also be detected in one image and then be searched in a consecutive frame.

This assumes that the motion between two consecutive frames is small | |- A
popular algorithm for this is the KLT-tracker | , , |. This algorithm
is used in | , , | for example.

Direct methods utilize image patches for correspondence creation |

, , , , |. The quality of the patch ahgnment
is measured by the photometric error which compares the intensity values of two
patches. During an optimization process the photometric error has to be computed
many times, often including warping and integrating the image patches. This is
computationally expensive but the computation costs for detecting key points and
descriptors can be saved | |. Furthermore, the patches can be aligned with
high accuracy at a sub-pixel level | -

Motion Estimation from Visual Features The 5-point algorithm is used to
compute the essential matrix from five 2D to 2D point correspondences. This
matrix describes the geometric relation between two cameras, and allows the ex-
traction of the rotation matrix and the direction vector of the relative pose between
two cameras | |. This technique has been recently used in | | to compute
the rotation matrix from a relative pose.

More often approaches are used which minimize a nonlinear optimization prob-
lem to compute a relative pose | , , , , ,
These approaches make use of a mathematical camera model that describes how
an image is generated in a camera. The values that are generated by the camera
model are then compared with the observed values of the real image. The differ-
ence is then expressed as a cost value. By adapting the relative pose and other
parameters of the camera model the cost value is minimized during an optimiza-
tion process. The so-called reprojection error measures the distance between a
2D point, which was projected to the image in the mathematical model, and the

observation from the real image | |. Approaches based on the reprojection
error usually only adapt the pose of the cameras and the reconstructed 3D points
in a mathematical model | , , |- In addition to the reprojection

error, cost terms can be added that do not require the reconstruction of 3D points
| , |. Direct approaches optimize the absolute difference between
pixel values from the real image and the image which is generated from the camera
model. This difference is called photometric error | |-
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For optimization the Levenberg-Marquardt algorithm, which is a combination

of the Gauss-Newton Method and Gradient Descent can be used | , ,

|. An implementation of this method is provided by the Ceres-Solver

library | |. Also, recent methods | , , | increasingly

make use of the incremental smoothing and mapping algorithm iSAM | |

and iISAM2 | ]. Those algorithms are able to efficiently add data to an

already existing optimization problem. This is achieved by only updating those
parts of the optimization problem that are affected by the update | .

IMU integration Recently, the integration of an IMU into visual odometry
algorithms has become popular. This results from the gain of accuracy in motion
estimation algorithms due to the complementary characteristics of cameras and
IMUs. Additionally, both sensors are cheap and are already installed on many
robots.

Visual-inertial odometry algorithms can be divided into loosely and tightly
coupled approaches. Loosely coupled approaches compute motion for IMU and
camera separately. After that both computed motion estimates are fused into
one which is more precise. This is generally done by the use of Kalman Fil-
ters | , , |. Those approaches have the advantage that visual
odometry algorithms can easily be replaced by different implementations. How-
ever, by combining IMU data and visual measurements in this way, the pose com-
putation by IMU and visual data can not profit from each other directly. This
problem is tackled by tightly coupled approaches | , , ,

, , , |. They can be subdivided into optimization
and filtering based approaches | |. Optimization based approaches use an
IMU motion model in an optimization problem to compute the most likely mo-
tion, together with visual measurements. Since the IMU delivers data at a high
frequency, the optimization problem grows very fast, causing high computation
times. This can be avoided by integrating the IMU measurements between two
camera frames to a single motion estimation, which can then be used during op-
timization | , , |- Another approach to avoid this problem
is proposed in | ]. There the IMU measurements are marginalized if the
number of measurements exceed a certain threshold. Tightly coupled filter based
approaches make use of a Kalman Filter. In contrast to the loosely coupled filter
based approaches, there the visual measurements and the measurements from the
IMU are directly incorporated into the Kalman Filter | ) |-
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1.2 Goals of the Thesis

This section describes the goals of the thesis at hand. It was written in the Vision
4 UAV group of the Technical University Madrid in cooperation with the Ac-
tive Vision Group from the University Koblenz-Landau. Both groups work with
robots, which can benefit from pose estimation by stereo visual-inertial odometry.
The Vision 4 UAV group of Professor Pascual Campoy mainly works with quadro-
tor UAVs. Their pose estimation is currently based on laser scanners or optical
markers, which works well. Nevertheless, a reliable stereo visual-inertial odometry
system for the UAVs would provide new opportunities. Already mounted cameras
and the on-board IMU could be used for navigation in addition to other tasks. In
the best case a laser could be replaced by a stereo visual-inertial odometry system
which would save weight and free capacities. Since markers would not be required
anymore, the system would become more flexible and the preparation overhead
would be reduced.

The main goal of the thesis is to develop a stereo visual-inertial algorithm
that is integrated into the software framework Aerostack' of the Vision 4 UAV
group. This framework is used to control UAVs with a high degree of autonomy.
The new algorithm should provide a suitable alternative to the currently used
approaches for localization in Aerostack. Furthermore, the programmed software
should be modular, so that it can also be used with other robots, e. g. those of the
Active Vision Group. Also an overview of the main ideas for stereo visual-inertial
odometry should be given in this thesis. The implementation of the algorithm and
the evaluation building up on this supports this idea since they give new insights.

1.3 Outline

The thesis at hand is structured into eight chapters. In the second Chapter 2
an explanation to the camera model will be given, that explains how 3D objects
are projected to the sensor of a camera. Also, there will be an explanation for the
geometric relations between two cameras. In Chapter 3 it will be described how key
points can be extracted from an image and how image correspondences between
these can be obtained. Building up on the two previous chapters, the motion
estimation by stereo visual odometry is explained in Chapter 4. Afterwards, the
properties of an IMU and the integration of this sensor into the visual odometry
algorithm will be explained in Chapter 5. With the theoretical knowledge of the
previous chapters the developed algorithm and its integration into the Aerostack
framework is presented in Chapter 6. In Chapter 7 the presented algorithm is
evaluated before in Chapter 8 the thesis will be summarized.

! Aerostack web page: http://www.aerostack.org
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Chapter 2

Camera Geometry

The goal of stereo visual odometry is to compute the motion of a moving stereo
camera over time. This is achieved by simultaneously reconstructing a 3D model
that contains the pose of a camera at different points in time as well as the 3D
geometry, which was recorded by the camera during that motion. In most cases
the pinhole camera model is used that describes how a world point in 3D space
is projected to a 2D pixel on the sensor of a perspective camera. The other way
round it can also be used to reproject a pixel from an image to a ray in 3D space.

The epipolar geometry describes the projective geometry between two views
| | and therefore provides the theoretical basis of reconstruction algorithms.
It introduces the concept of the essential matriz, that can be computed from the
relative pose between two cameras or at least five 2D to 2D point correspondences.
Due to its versatile properties, it will be used in this thesis during the triangulation
of 3D points, the search of key point correspondences, and the reconstruction of a
relative pose between two cameras.

In order to triangulate 3D points from pixels, a second image from a perspective
camera is needed, showing the same 3D geometry from a different view. During
the triangulation, the intersection of the rays that are defined by the reprojection
of the two pixels are searched to determine the position of a 3D point. However,
for two cameras whose relative pose is only defined up to a scale factor, the metric
position of the triangulated point can not be defined. This is usually the case for
pure monocular visual odometry. The use of a stereo camera has the advantage
that the metric pose between the left and the right camera can be derived during a
calibration procedure. This enables to triangulate 3D points with the same metric
scale.

In the following first Section 2.1 first the pinhole camera model is described.
Building up on this the epipolar geometry is explained in Section 2.2 before in
Section 2.3 the triangulation of 3D points will be introduced.

17
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Figure 2.1: Illustration of the camera model. This figure shows the projection of a 3D
point onto the image plane and the relation between camera and world coordinates is
visualized. The origin of the camera coordinate system c is determined with respect to
the world coordinate system w. This relation is determined by a rotation matrix R and
a translation vector t. A point p® in camera coordinates can be projected to a point p?,
which lies in the light blue image plane. Note that the image plane is placed in front of
the camera.

2.1 Camera Model

In order to model a camera a fixed reference coordinate system w in which the
pose of a camera and 3D objects can be defined is needed. The pose of the camera
is measured with the camera coordinate system c with respect to w. It is a right
handed coordinate system whose z-axis points into the direction of camera view
and the z- , y-axis point right and down respectively. Its relation to w is described
by a rotation matrix R and a translation vector t that are called the extrinsic
camera parameters. In Figure 2.1 these relations are visualized. This figure shows
also the different coordinate systems whose axes are colored in red for the z-
axis, green for the y-axis and blue for the z-axis. This color scheme will be used
consistently over all figures in this work.

Before a world point p* can be projected onto the camera sensor it has to be
transformed into a point

p°=R-p” +t (2.1)

in camera coordinates. The camera coordinate system is also the center of a central
projection, which is called optical center. To project a point p° = (e, Ye, 2¢)" to
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the sensor of a camera a perspective division is applied to p° first. It projects the
point p¢ to a homogeneous point

' xc/zc xc/zc
i)% = yc/zc = yc/zc (22)
1 Ze/ Ze

in the homogeneous image coordinate system ¢. During this projection the depth
information of this point is lost, since the z. value can not be recovered after the
perspective division. The intrinsic camera parameters are defined by the focal
lengths f;, f, and the center of projection whose coordinates are given by c,
and c¢,. These parameters can be used to transform p' into homogeneous pixel
coordinates. This transformation is expressed with the calibration matrix K as

0 e
P=K-p={0 f ¢ |-p (2.3)
0 0 1

The projection of a point p© into pixel coordinates is also visualized in Figure 2.1.
Here p° is projected along the black ray directly to a point p? in pixel coordinates.

Some lenses, especially ones with a wide field of view, cause a significant dis-
tortion of the captured image that can not be neglected. It can be modeled by a
distortion function dist, which models the distortion with a second or higher order
polynomial in image coordinates. The distortion function dist transforms p' from
homogeneous image coordinates into the distorted point

P’ = dist(p") (2.4)
in the homogeneous distorted image coordinate system d. In Equation 2.3 p? then
replaces p' and is transformed into pixel coordinates as follows:

pP=K - p?. (2.5)
The coefficients of the polynomial in the distortion function are called the distor-
tion coefficients. They are usually derived together with the parameters of the
calibration matrix K during a calibration process of the camera | , |-

Since the geometric concepts and algorithms building up on the explained pro-
jection pipeline rely on undistorted coordinates, it is important to be able to reverse
the distortion. This is similar to the distortion done in image coordinates. In a

first step a distorted pixel p is transformed into p¢ by making use of the inverse
camera matrix K '

pl=K'p'. (2.6)
The inverse distortion function dist™' can then be applied to p? so that
p' = dist™'(p%) (2.7)

is computed.
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Figure 2.2: Illustration of the epipolar geometry. The figure shows a schematic visual-
ization of the epipolar geometry. Two cameras with their coordinate systems c¢; and ¢
are visualized. By connecting the two origins of the camera coordinate systems and an
additional 3D point pv, the epipolar plane is determined. The projection of p* in image
coordinates lies in a plane that is parallel to the image plane at z. = 1. The two epipolar
lines {* and I/ result from the intersection of these planes with the epipolar plane.

2.2 Epipolar Geometry

The epipolar geometry describes the extrinsic and intrinsic relation between two
projective cameras. This can be explained visually by intersecting planes, derived
from two cameras and a 3D point p* lying in front of these cameras. As it is
shown in Figure 2.2, the origins of the camera coordinate systems c¢; and ¢y can
be connected by a line called baseline. By connecting ¢; and ¢y with p* two more
lines can be generated. All three of this lines lie in one plane, which is called
epipolar plane. Through intersecting the epipolar plane with another plane which
is parallel to the image plane at z, = 1, two more homogeneous lines I’ and I/ can
be generated for each camera. These lines are part of the epipolar plane as well
and are called epipolar lines. Via the epipolar plane the points p’ and p’ can be
transferred onto their corresponding epipolar lines I/ and [’ in the opposite plane.
This relation is expressed by the essential matrix E. One way to derive E is to
compute it from the relative pose between ¢; and c,. This is done by using the
rotation matrix R and the translation vector ¢ = (t,,%,,t,)", which transform a
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3D point from ¢; to ¢y coordinates. By making use of the hat operator A, t is
mapped to a skew symmetric matrix

0 —t. t,
th=1t. 0 —t.|. (2.8)
—t, t. 0
and F is then defined as:
E=t"R. (2.9)

The points p’ and p’ in homogeneous image coordinates, can then be transferred
! = Ep' (2.10)

I'=E"p (2.11)

to their corresponding epipolar lines. A 3D point along the ray determined by the
center of the camera coordinate system c; and p* is therefore projected to I/ as
long as it is in the field of view of the camera belonging to c;. The same holds
true in reverse for a 3D point that is moved on the ray determined by p’ and p®.
A point in the first image therefore creates a corresponding epipolar line in the
second image.

Furthermore, it can be verified by the so called epipolar constraint

=T i
P ETp =0 (2.12)
pl'=0
that two corresponding points lie exactly in the same epipolar plane. Given two
image points, one in either image and each of them originating from the same ob-
ject, the epipolar constraint predicts them to lie on the same epipolar plane. This
constraint exploits that the dot product of a homogeneous line and homogeneous
point is zero if the point lies on the line.

2.3 Sparse 3D Reconstruction from Two Views

During the projection of a 3D structure to an image as explained in Section 2.1
the depth information of this structure is lost. This information can be recovered
by making use of two images captured from different perspectives. This requires
the relative pose between the two cameras, whose coordinate systems are denoted
with ¢; and cy. To recover the 3D information for one 3D point two corresponding
2D points p’ and p’ belonging to ¢; and ¢, must be known. An algorithm that
tries to reconstruct a 3D point puts a ray through the origin of ¢; and p’ for
the first camera and a second ray through c, and p’ for the second camera. It
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Figure 2.3: Tllustration of a 3D point triangulation. This figure shows a pair of corre-
sponding 2D points p’ and p’ seen by two cameras from different perspectives. Due to
inaccuracies p’ and p’ do not satisfy the epipolar constraint and get corrected until they
lie as corrected points p’* and p’’ in the same epipolar plane. By laying a ray through
the corrected points and their corresponding center of projection two rays are created.
They intersect at the point at which the 3D point p"“ is created.

then computes the intersection of these two rays. This is done by solving a linear
system of equations, which is determined by the 2D point correspondences and
the relative pose between the cameras.

In practice the exact intersection is never found due to uncertainties

e in the estimated relative pose of both cameras,
e the calibration of the cameras or the camera model or

e in the spatial localization of the key points | -

Therefore the algorithm tries to estimate a point which lies between these two
rays. However some of the reconstructed points are reconstructed due to these
uncertainties with high inaccuracies and a negative z-value. The reason for this
is that p’ and p’ do not lay exactly on the same epipolar plane. Hartley and
Zisserman propose to use an optimal triangulation method under the assumption
that the noise of the 2D points is normal distributed | |. Like illustrated in
Figure 2.3, this method searches for two corrected points p’ " and p” that minimize

argmin [|p” — p'||* + ||p” — p’||* subject to p'TEP’ = 0. (2.13)
p/'L,p/]

These points p’* and p”/ are then used for reconstructing the 3D point p“ by
solving the linear system of equations.



2.3. SPARSE 3D RECONSTRUCTION FROM TWO VIEWS 23

(a) A reconstructed point cloud. (b) Image that was used for reconstruction.

Figure 2.4: Visualization of a point cloud reconstruction and an image, which was used
for this reconstruction. In Figure (a) a point cloud, which was reconstructed from several
stereo image pairs can be seen. In the front part of the point cloud the reconstruction of a
marker pattern can be seen, next to a visualization of stereo camera coordinate systems.
The marker pattern corresponds to the one in Figure (b). This precise image was used
to reconstruct the point cloud in Figure (a).

In order to compute a point cloud the above described method is repeated many
times for different point correspondences. The result of such a reconstruction for
several stereo image pairs can be seen in Figure 2.4a. An image from which this
point cloud was reconstructed is shown in Figure 2.4b.

The scale of the reconstructed points depends on the length or scale of vector
t that describes the relative position between the cameras that was used for trian-
gulation. In case of visual odometry with monocular cameras the absolute scale of
a translation vector t between two cameras is often unknown. For a stereo cam-
era instead the metric scale of t is known from a previous calibration procedure.
Therefore 3D points can be triangulated with a metric scale.






Chapter 3

Feature Detection, Matching, and
Tracking

The basis of visual odometry is the ability to track landmarks as image features
from consecutive images. Due to the change of image features in overlapping
images, which is caused by the motion of a camera, it is possible to reconstruct
this motion. Therefore salient features in images have to be detected first. It
is important to detect particular features that can be relocated in a consecutive
image with a high probability. Without this ability a motion computation is not
possible. One type of image features are key points, which can be for example
corners in images. More concrete in this thesis FAST corners are used as key
points, which were already mentioned in Section 1.1 as a state of the art corner
detector. They are located at the intersection of two edges and can therefore be
precisely localized.

Additionally, it has been found to be important for the precision of the mo-
tion estimation that key points are equally distributed over the image. This
is typically not guaranteed by a feature detector itself. A bucketing algorithm
| , | can be used to improve this.

In order to be able to re-detect key points in another image, different techniques
exist. One is to find matches between two independently detected sets of key points
from two different images. For matching the key points are described by an key
point descriptor algorithm with a vector of features. These features describe the
key point by the appearance of the image region around it. The Rotated BRIEF
(Binary Robust Independent Elementary Features) | | descriptor here used
describes a key point by using a bit string whose bits represent the results of binary
tests. To find corresponding key points between the left and the right image of the
stereo camera a constrained matching strategy is used in order to decide which key
points belong together. Another technique to find key point correspondences is to
detect key points in one image and to track them by their appearance in a second
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image. For this the image patch around the key point is compared with spatially
close image patches in the second image. This approach assumes that key points
do not move too far in subsequent images and is therefore well-suited for image
streams, where the expected motion of a key point is small | -

In the first Section 3.1 of this chapter the FAST corner detector is described in
detail, followed by the bucketing algorithm in Section 3.2. After that the Rotated
BRIEF feature descriptor is explained in Section 3.3 that can be used in combina-
tion with the constrained matching strategy explained in Section 3.4. Finally key
point tracking is explained in Section 3.5.

3.1 FAST Corner Detector

The FAST corner detector searches for corners in an image I. This is done in
several consecutive steps including a preparatory machine learning phase. Without
edge treatment, each pixel p € [ in pixel coordinates is examined to be a corner
point. Around a pixel p,, that is tested to be a corner a Bresenham circle of
radius three is defined. Figure 3.1 shows an image of a window in the left part of
the figure. On the right a detail of a corner of this window is shown to a pixel
grid enlarged. There the pixel p, can be seen in the middle of the pixel grid.
The Bresenham circle around p,. is visualized with pixels that have a bold white
border. FEach of these pixels is referenced by a number between 1 and 16. To
determine whether p, ., is a corner a high speed test is performed, that checks if
Diest Can . It compares the image value I(p,.q) at position p,., with the values
of the pixels on the Bresenham circle at position 1, 5, 9 and 13. For a threshold
t the pixel p, . passes the high speed test, if at least three of the values at these
positions are all smaller than I(p,.) — t or all greater than I(p,) +¢. If the first
test is passed by p,. @ second test is executed, otherwise p,.; is not assumed to
be a corner. In this test a continued arc consisting out of a = 12 pixels have to be
smaller than I(p,., ) —t or greater than I(p,.,)+¢. This test is visualized in Figure
3.1 on the pixel grid exemplary as a dotted line. When this test is also passed by
Piest, 1t 18 assumed to be a corner.

Although this algorithm could already be used as a corner detector the authors
Rosten and Drummond | | criticize four weaknesses of this approach:

1. The high-speed test does not generalize well for a < 12. A smaller a is needed
because with a = 12 only corners with an acute angle are found.

2. The choice and ordering of the fast test pixels contains implicit assumptions
about the distribution of feature appearance.

3. Knowledge from the first 4 tests is discarded. This could be used during the
second test in order to save computational effort.



3.1. FAST CORNER DETECTOR 27

‘dll.....

Figure 3.1: Illustration of the FAST corner detection. The image on the right shows a
detail from the image on the left enlarged up to pixel level. First a pixel p;. is chosen
to be tested and around it a Bresenham circle is defined, highlighted by pixels with a
border. In a high speed test the pixel 1, 5, 9 and 13 are tested. If this test is passed, 12
pixel in a row, marked by the dotted line, have to fulfill the test conditions of a second
test [RDO6].

4. Multiple corners are detected adjacent to one another, but only one pre-
cise position of the corner is required. This could lead to mistakes during
matching.

In order to tackle the first three problems, the authors propose an offline approach
to train a decision tree. The decision tree is then used to decide whether or not
a pixel is a corner.. For training a set of training images is needed. These images
are then used only by the second test to detect corners. Based on the detected
corners it can be determined which pixel on the Bresenham circle contain the
most information gain to decide if p,., is a corner. This information can then
be encoded into a decision tree that will be used to find corners in images. For
practical application the resulting decision tree is converted into program code
of the programming language C, containing nested if and else branches. Finally
the code is compiled and optimized by a compiler. Using a precomputed and
optimized decision tree makes the FAST corner detector computationally very
efficient. However a lot of adjacent corners are detected by this algorithm. In
order to tackle this problem a corner response function V' is introduced, which is
computed for every detected corner. This function uses the set of pixels C' on the



28 CHAPTER 3. FEATURE DETECTION, MATCHING, AND TRACKING

Bresenham circle around the detected corner. The pixels ¢ € C' are then divided
into two more sets

Ps ={ce C|I(c)

Z (ptest) + t} and
Pp={ceCll(e) <

(ptest ) - t}

for the bright and the dark pixels on the Bresenham circle. The response function
V' is then defined as:

; o

V<ptest) = max{ Z |I<C) - [(ptest)| —t, Z ’[(ptest) - I<C)’ - t} : (32)

CePp CePp

In order to obtain the final corners, a non maximum suppression is performed on
the evaluations of V | |-

An example of extracted FAST corners for a threshold ¢ = 30 and a = 9 can
be seen in Figure 3.2a. The corners are marked with green squares in the image.
It can be noticed that in some image regions more corners are detected than in
others.

3.2 Feature Bucketing

The bucketing algorithm aims at achieving an equal distribution of key points
over the image. Interest point detectors often use a threshold to determine which
pixels will be a key point and which will not. Since some regions in images have
higher contrast and others a lower one, different thresholds for different image
regions would often be appropriate. However in practical application often only
one heuristic threshold is chosen and applied for corner detection on all images
during visual odometry. From this threshold it is not clear how many key points
will be detected in an image if for example light conditions or the type of texture
change. In the example in Figure 3.2a adjacent key points were extracted on the
play carpet and the chessboard. In the upper left part of the same image hardly
any key points were detected, even if there are possibilities to detect some.

The bucketing algorithm tries to solve this problem by subdividing the whole
image into non overlapping squares, called buckets. Within each bucket, the algo-
rithm keeps only the n key points with the highest corner values with respect to a
corner response function. In this case the response function indicates a key point
by returning high values. This allows to choose a lower threshold ¢ that makes
sure that in images with low contrast still key points can be detected. Addition-
ally, the maximum number of key points and therefore the computational effort of
subsequent algorithms is limited. Furthermore a more uniform distribution of key
points over the image is achieved. A result of the bucketing algorithm based on
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(a) FAST threshold 30 without bucketing (b) FAST threshold 15 with bucketing

Figure 3.2: Visualization of detected key points with and without bucketing. In (a)
604 key points where extracted by the FAST algorithm with ¢ = 35 and a = 9. In this
image a lot of key points are gathered at the chessboard pattern and at the play carpet,
where strong image values are present. In (b) the initial key points where extracted with
t =15 and a = 9. The bucketing algorithm was applied afterwards which finally lead to
541 more uniformly distributed key points.

FAST features can be seen in Figure 3.2b. To achieve a more uniform distribution
of key points the FAST threshold was set to ¢ = 15. After that the bucketing
algorithm with 10 horizontal and 10 vertical buckets was applied. A maximum of
10 key points was allowed in each bucket. Comparing Figure 3.2a in which 604 key
points were detected with Figure 3.2b with 541 key points it can be noted that the
distribution is much more uniform. Many adjacent key points on the chessboard
pattern or the play carpet have been removed. However also new key points in
the upper left region of the image have been added due to the lower detection
threshold. A disadvantage of this is that also a lot of key points where detected on
edges. Their positions can not be as precisely located as those of corners, which
could lead to a more in precise motion estimation.

3.3 Rotated BRIEF Feature Descriptor

Rotated BRIEF is a binary feature descriptor, which describes key points by using
a bit pattern. It is part of ORB (oriented FAST and Rotated BRIEF), a combi-
nation of an extended FAST key point detector and a rotation invariant BRIEF
|CLSET10] descriptor. In this thesis only Rotated BRIEF is explained since it is
used in combination with plain FAST corners in the developed visual odometry
algorithm. In the following, the BRIEF descriptor is described first. The following
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part will explain Rotated BRIEF, which adds rotation invariance and a learning
stage to BRIEF.

BRIEF describes a key point k by comparing intensity values of smoothed
image patches. Let the function g return the value of the center pixel from a 9 x 9
patch that was smoothed by a Gaussian filter. Then a binary test

T(g;p,q)z{lzg(p) jq)’ , (3.3)

(q)

can be defined, where p and g are pixel locations and g(p) returns the smoothed
patch value for pixel p. The function 7 can then be applied to n = 256 different
pixel location pairs (p, q) in a larger patch of size 31 x 31 around k. The results
of the function are then stored as a bit string:

<
0:g(p) >

b(k)= Y 27'7(gpiq,), (3.4)

1<i<n

which serves as the BRIEF descriptor of a key point k. Comparison of these binary
descriptors can be carried out efficiently by computing their Hamming distance.

The authors of BRIEF suggested several possibilities to choose the pixel posi-
tion pairs. The one used during the development of Rotated BRIEF, is generated
by choosing two normally distributed pixels inside of the large patch. An example
of the point pairs that are produced by this procedure are visualized in Figure
3.3a. Once the patch pairs are generated they are used for every computed de-
scriptor to make them comparable. If a key point is redetected that is rotated,
also the image region around the key point is rotated. As a result, the descriptor
changes strongly and is not very similar anymore to the initial descriptor. This
happens since the image patch of the descriptor is not rotated with the key point.
A solution that avoids this problem rotates the patch pattern by the orientation
provided by the previously detected key point. Since a computation of the exact
rotation for every key point is computationally expensive a look up table of patch
patterns is generated. It contains 30 patch patterns that discretize the orientation
of the key point in steps of 12 degrees. The authors denote this descriptor as
Steered BRIEF.

Even if Steered BRIEF is rotationally invariant some good properties of BRIEF
are lost. One of these properties is that the variance of single features has de-
creased. Patch pairs with a mean close to 0.5 have a high variance and return
different values for different inputs when they are used with 7. Figure 3.3b shows
a histogram over the number of features and their distances from 0.5 for the dif-
ferent BRIEF descriptors. BRIEF has many more feature patches that are close
to 0.5 than Steered BRIEF. In order to restore this property a machine learning
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Figure 3.3: Visualization of patch pairs for BRIEF and a histogram of bit mean values.
Figure (a) shows 128 pixel location pairs. The points in the image visualize pixels of
the large image patch around a key point. From the inside of this patch, pairs of pixels
are visualized by lines. By making use of the location pairs and a binary function a key
point descriptor is then computed. The histogram in Figure (b) shows the distribution
of patch pairs by their distance to a mean of 0.5. It is obvious that Rotated BRIEF has
much more patch pairs close to a mean of 0.5 than Steered BRIEF. This indicates that
the features react differently to different inputs, which is needed for a good descriptor.

approach is employed to select the most descriptive image patch pairs. This is
achieved by generating a set of training patches, containing all possible pairs of
non overlapping patches. With those patch pairs 7 is executed on a large number
of key points. Then the mean and the variance of the results for each patch pair
are examined. Also uncorrelated patch pairs for the descriptor are desired. The
machine learning algorithm therefore generates a feature descriptor that contains
patch pairs with a mean close to 0.5 and that contains patches that are uncorre-
lated.

The resulting descriptor is called Rotated BRIEF. Figure 3.3b shows that the
number of features with a mean close to 0.5 has increased a lot in comparison
to steered Brief. However, the number of patch pairs close to 0.5 from Rotated
BRIEF is still lower than compared to BRIEF. This results from the fact that if
the key point is rotated, while the BRIEF descriptor not, totally different image
regions are compared by the features | .
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Figure 3.4: Visualization of feature matches. In the visualization 71 feature matches
are visualized as green lines. At the ends of each line a key point was detected.

3.4 Constrained Feature Matching

Feature matching tries to find corresponding features between two sets of indepen-
dently computed feature descriptors. In order to find the best matching descrip-
tors, the distances between pairs of descriptors from the two sets are compared.
In the case that for one descriptor in the first set several other descriptors with
a similar distance in the second set exists it is not sure which correspondence is
correct. This is especially a problem in images with repetitive image structures
that cause similar feature descriptors. A matching algorithm then has the choice
to either reject similar matches, causing a decrease in the number of correspon-
dences, or to accept them, increasing the number of incorrect correspondences. In
case of a stereo camera the relative pose between both cameras is precisely known
from a prior extrinsic calibration. This enables computation of the essential ma-
trix E to reduce the number of possible candidates for correspondences by making
use of the epipolar constraint. For a key point p’ in I the corresponding epipolar
line I/ is computed as shown in Equation 2.10. During the correspondence search
only key points that lie on this epipolar line are considered to be a correct match.
Due to inaccuracies in the intrinsic and extrinsic calibration of the camera model,
the camera model itself and the key point location, the practical implementation
allows points up to a certain distance as correct matches. This procedure reduces
the number of possible matches and therefore eliminates unfortunately possible
ambiguities, which results in more correct matches. However it is still possible
that wrong correspondences are made. These are called outlier matches whereas
the correct matches are called inlier matches.

Figure 3.4 shows a result of the constrained matching procedure. In total 71
matches where found between the left and the right image pair of a stereo camera.
Each match is visualized as a green line between the key points.
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3.5 Feature Tracking

Another technique for finding features over subsequent images is to detect them
in a first image and to track them in a consequent image by using their appear-
ance. This assumes a small spatial motion of a tracked point in pixel coordinates.
Consequently also the appearance of a region around the tracked point is assumed
to be similar.

For finding a point from a first image [ in a second image J again, a quadratic
image patch around the tracked point in [ is defined. The values inside the image
patch are then compared with regions in J. This assumes that the displacement
of the tracked point in the image is relative small and thus the appearance is
expected to be similar too. For comparing two image patches, distance measures
like the sum of squared differences can be used | |. The error between the
image patches is then used as a cost function during an optimization step. During
the optimization the corresponding image patch with the highest similarity to the
original image patch is identified. This kind of tracking algorithm is broadly called
the Kanade, Lucas, Tomasi tracker (KLT tracker). It was first developed in | |
and then improved in | , |. Based on the original concept a pyramidal
version of the KLT tracker has been developed. It creates a image pyramid for
I containing I and smaller versions of it. The same procedure is executed for J.
Starting at the smallest scale in the image pyramid the KLT-tracker searches the
point correspondence. This leads to a coarse but easier tracking, since fewer pixel
have to be examined and the spatial distance between the corresponding points is
smaller. The result of this execution of the algorithm is then used as initialization
for the next larger pyramid scale, where the image correspondences are refined.
This execution should compute a more precise location of the corresponding point
because of the higher resolution of the image. The process is iterated until the
pyramid layer of the original image is reached. The presented coarse to fine tracking
can speed up the tracking process and makes the algorithm work better with larger
motions of tracked points | , -






Chapter 4

Motion Estimation for Stereo Visual
Odometry

The motion estimation part of a stereo visual odometry algorithm processes image
correspondences of consecutive stereo image pairs in order to derive motion of the
sensor system over time. This is done by estimating the relative transformation
between the position and attitude of the camera at the points in time at which
stereo image pairs were captured. The trajectory of the stereo camera can be
derived by iteratively concatenating these poses.

A problem during this process is that the image correspondences can contain
outliers. They potentially cause great errors during motion estimation and increase
the drift of the estimated trajectory. In order to estimate motion in the presence
of outliers the motion estimation algorithm has to be robust against them. This
means that outliers have to be identified in order to give them no influence to the
motion estimation.

Even inlier correspondences can be faulty due to possibly inaccurate localiza-
tion of detected image correspondences. Therefore, the most likely relative motion
of the camera given the inlier correspondences should be derived. The information
from the inliers has to be fused in a way that the most likely motion is computed.
In this work the motion estimation is done by solving a nonlinear optimization
problem, where all known information from image correspondences can be in-
corporated at the same time. An additional advantage of this approach is that
data about motion from the IMU can be integrated, which will be explained in
Chapter 5.

The remainder of this chapter is structured as follows. First an overview about
nonlinear optimization in relation to visual odometry is given in Section 4.1. After
that more formal and detailed introduction to the motion estimation problem is
given in Section 4.2. The two following sections build on the formulation intro-
duced in that section. Section 4.3 then explains a possible method to compute

35
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an initial guess for the motion estimation problem. Finally in Section 4.4 it is
explained how a nonlinear optimization problem can be constructed for motion
estimation.

4.1 Nonlinear Optimization

During the previous sections measurements in form of key point correspondences
have been derived from images. The measurements are faulty and a mathematical
motion model has to be used that incorporates these errors. Due to the errors in
the measurements it is not clear how the correct state of the model looks like but
the most likely state can be estimated. This can be achieved by constructing a
least squares problem that quantifies how good a model state fits to measurements
using a sum of squared differences . A solution to this problem can be computed
by a nonlinear optimization algorithm that tries to find the state that minimizes
the sum of squared differences.

The computation of the single summands of the sum is done by so called cost
functions. They predict measurements for a state & of a mathematical model. The
cost function compares the predicted measurements with the real measurements
and then computes the difference between them in form of a residual vector r(z).
Since different types of cost functions can be used they also often quantify the
calculated residuals in different units and with different confidences. Therefore
they have to be standardized in order to be comparable. The standardization is
done by making use of a covariance matrix 3, which specifies the inaccuracy of
a measurement as a normal distribution [ . With this information the
objective function that has to be minimized is defined as the sum over the squared
standardized residuals:

1S
arggnngz Iri()|I55, (4.1)
=1

where n is the number of cost functions in the problem, i is their index, and ”H2§3
denotes the squared Mahalanobis distance.

In some cases the observed measurements are outliers. For a parameter es-
timation that is close to the correct solution, these outlier measurements cause
a significant larger residual error than it is done by inliers. This error value of
outliers grows quadratically. This can cause that an optimization algorithm is not
able to find a correct optimal solution since it worth more to minimize the fast
reducing errors of outliers than the already small ones of inliers. One strategy to
avoid this is the use of loss functions. Loss functions reduce the influence of large
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Figure 4.1: Plots of the trivial and the Tukey loss function. The z-axis shows the
length of the residual vectors s = Hr(ac)H% The corresponding costs after applying the
cost function are shown on the y-axis.

errors and make the optimization to a certain extent robust against outliers. To
them the non negative scalar

s=|r(@)s, (4.2)
is passed as an argument. In this work the trivial and the Tukey loss function will

be used. Plots of these loss functions can be seen in Figure 4.1.
The trivial loss function:

ptrivial(s) = S, (43)

returns simply its parameter s and does not add any robustness to the optimization
problem. Here the opposite is the case, due to the squaring in Equation 4.2 larger
errors grow faster than small ones. The use of this loss function makes sense when
there are no outliers in the measurements.

The Tukey loss function is defined as:

(1 - a%)g> ssd (4.4)

?
s> a?

pTukey(S) = {

ol% @[S

where a is a scale factor, that is chosen in dependence of the current application
of the loss function | |. It computes values that are smaller than s in
general and which do not increase for s > a?. Which measurements are classified
as outliers is therefore determined by the value of s. Since outliers will result
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in constant error values the optimization algorithm can compute state updates
that decrease residual errors for inliers without that the residual errors for outliers
increases. In case of the Tukey loss function this avoids that outliers that cause a
s that is greater than a? have influence on the solution of the optimization result.

Finally the nonlinear optimization problem where every standardized residual
vector belongs to a loss function p; can be defined:

1
argmin - Zm(Hn(w)H%)- (4.5)
=1

It is used to estimate a state that minimizes the sum over the errors. This state
will be the final solution of the optimization problem.

The optimal state can be computed by an optimization algorithm of which some
where already mentioned in Section 1.1. In this work the Levenberg-Marquardt
algorithm is used which interpolates between gradient descent and the Gauss-
Newton method during optimization. In order to solve the optimization problem
it needs an initialization of this problem first that is close to the final solution. If
the initialization is bad it can happen that the algorithm does not converge to a
global minimum due to the nonlinearity of the optimization problem. Starting at
the initial state the algorithm adapts this one iteratively with state updates, in
order to approach an optimal solution. The adaption is done several times until
a maximum number of iterations has been reached. Additionally, a preliminary
abortion is possible if the state vector changes only by a amount that is smaller
than a predefined threshold. The small change indicates that a good solution of
the state vector is found. After the algorithm has aborted the state from its last
iteration is used as the solution of the optimization problem | |-

4.2 Problem Definition

In order to measure motion with a stereo camera a coordinate frame, with which
the position of the stereo camera is represented, is needed. This will be without
loss of generality the coordinate frame of the left camera ¢;. The fixed relative pose
S between the ¢; and the coordinate frame ¢, of the right camera is derived during
a preceding calibration procedure. During this procedure, the intrinsic camera
parameters of both cameras are derived as well. These information can be used to
triangulate 3D points from image correspondences.

Stereo visual odometry computes for two successive stereo image pairs from
time £ — 1 and k a relative pose between these points in time. Here this is done by
making use of key point correspondences, which can be obtained as described in
Chapter 3. They are used to derive the relative pose of the stereo camera between
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Figure 4.2: TIllustration of the stereo visual odometry motion estimation. A stereo
camera consists out of two cameras with the coordinate frames ¢; and c¢,, whose fixed
relative pose is given by the transformation S. The motion of that camera is measured
with respect to the fixed frame w. In order to measure the motion, at time k = 0 the
initial absolute pose Cy of the stereo camera is given. From there on relative poses are
computed using point correspondences. By accumulating these poses new absolute poses
can be computed | |-

time k and k — 1 as a rigid transformation. This transformation consists out of a
rotation Ry and a translation £,_; ; that are potentially estimated separately.
The rigid transformation T'_; , € R4 is defined as follows:

R_ tr_
Ty = ( kol’k kll’k) . (4.6)

The motion measurement starts at time £ = 0 and is measured with respect to
a fixed frame of reference w. For this a predefined initial absolute pose Cy € IR*4
that determines the transformation of the camera with respect to w is needed.
Note that here the transformations are defined inverse to those of Chapter 2. The
reason for this is that different conventions in the field of motion estimation and
computer vision are used. Inverting the transformation matrix will transform
between both conventions.
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Starting with, C|, stereo visual odometry accumulates the relative poses to
compute the following absolute poses of the stereo camera. Therefore a absolute
pose C}, at time k is defined as:

Ck = CkflTk,Lk. (47)

The camera trajectory starting at time k£ = 0 to the current time n is then defined
as the set of absolute camera poses Cy.,, = {Cy,...,C,} | |. This process is
illustrated in Figure 4.2.
The estimation of the relative poses is done by solving an nonlinear optimiza-
tion problem. Its state
x = [Ri_1p tr1 (4.8)

represents the currently estimated relative pose T'_ .

4.3 Visual Motion Initialization

As mentioned in Section 4.1 a reasonably good initialization of the nonlinear opti-
mization problem is needed in order to enable it to converge to a correct solution.
In case of stereo visual odometry a good relative pose estimate of T';_; j is needed.
One possibility is to compute an initialization by making use of the essential ma-
trix. As already mentioned in Chapter 2 it can be computed from five 2D to
2D point correspondences. This is known as the 5-point problem and the algo-
rithm that solve these problems are called 5-point algorithms | , |. Since
sometimes outlier correspondences are created it can happen that these are used
during the computation of the essential matrix. In this cases it is possible that
the computed essential matrix strongly differs from the correct one. In order to
avoid this the 5-point algorithm is typically used in combination with a RANSAC
algorithm. This one works as follows. From a set of more than five 2D to 2D point
correspondences sets of five point correspondences are chosen at random. For each
of these sets a hypotheses for the essential matrix is computed. These hypothesis
are scored by verifying how good the essential matrix fits to all 2D to 2D point
correspondences. One method for scoring a hypothesis is to count the number of
inliers, that fall below a certain point to epipolar line distance, over all point cor-
respondences. Finally the hypothesis with the highest number of inliers is chosen
as a result. Since this method is probabilistic it is not guaranteed that it produces
always the same solution. But for a high number of hypothesis generations the
solution tends to be stable. For the 5-point algorithm this number depends on the
expected number of outliers, the number of total point correspondences and the
probability with which a correct solution should be chosen | ; |-

From the resulting essential matrix then the rotation matrix Rj_; ; and a trans-
lation vector #;_;; that is defined up to a scale factor can be computed | -
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For the initial pose the computed Rj_; ; can be used directly but ik—l,k has to be
scaled to its estimated correct length. The scale can be computed from a 3D point
p°¢ = (2% 9° 2°)", which was triangulated with the correct scale from the stereo
camera and a 3D point p’® = (2/¢,y¢, )T with incorrect scale. The point p’* was
triangulated from a 2D to 2D point correspondence of the left camera over time.
For this Ry, and ik—l,k with incorrect scale were used. In a next step the scale
factor a of p’® is computed as:
nifaz

a= 3 . (4.9)
It can be used to scale %k—l,k to its correct length. However, for being robust against
outliers the scale is computed for all point correspondences. Then heuristically the
5% of the smallest and 5% of the biggest scale factors are discarded, since it is
assumed that they contain outliers. After that the mean & over all remaining scale
factors is computed. The scalar & is then used to compute an initial estimate of
the correct scaled translation vector:

tho1p=a- -t 14 (4.10)

The method to derive the initial pose here presented is inspired by the method
that is described in | | to derive a consistent scaled motion of a monocular
camera from 2D to 2D point correspondences. This method uses also triangulated
3D points but without a metric and it uses another formula to estimate scale. Also
the method for deriving the translation vector in | | is similar in terms that
it uses reconstructed 3D points triangulated with a metric scale from a previous
stereo image pair. Here during an optimization procedure the full translation
vector whose scale is derived from the triangulated 3D points is estimated. However
the here presented method is to the best of our knowledge not presented in the
literature and therefore assumed to be new.

4.4 Cost Functions for Visual Motion Estimation

In the presented work feature correspondences with and without depth information
are utilized for motion estimation in order to profit from both. This idea is inspired
by Zhang et. al.| | who did this in a similar way. For this two different types
of cost functions are used.

The first type of cost function computes the reprojection error, that quantifies
the distance between a predicted projection of a 3D point and its corresponding
observation. This quantification of how good the current state of the motion model
fits to the measured key points is done in the left stereo image, which was captured
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at time k. A basic requirement for this is, that a 3D to 2D point correspondence
is known, where p;! ;| was triangulated at time k£ — 1 and its corresponding 2D
key point p} at time k in the left stereo image is known. By making use of the
currently estimated motion transformation p;’ , is transformed into

Py = Rf_l,kpitl - Rz—l,ktk—l,k (4.11)

in camera coordinates ¢; of the left stereo camera at time k. In a next step pj’
is projected into its predicted projection p’in image coordinates. To compute
the residual error the corresponding measurements that were originally detected
in pixel coordinates have to be transformed into image coordinates as described
by Equation 2.6 and 2.7. Finally the two-dimensional residual vector for the left
camera:

r (@ Pl o) =p' —p' (4.12)
can be defined. An important property of these cost functions is that its residual
prediction error decreases only if the translation of the relative pose matches the
right scale. This enforces a correct scale of the relative pose during optimization.

The second used type of cost function exploits the epipolar constraint to im-
prove the motion estimation. The idea of the cost function is that a 2D to 2D point
correspondence fulfills the epipolar constraint. The cost function first computes
from the current estimated state the essential matrix Ej_;; by making use of
Equation 2.9. A homogeneous point P, in image coordinates, which was detected
at time k is transformed into a epipolar line

lho1 = Erx 14D, (4.13)

at time k& — 1. The point to line distance d(I}_,, P, ;) between the epipolar line
li , and P} _, in image coordinates can then be used as a measure of how good
the estimated relative pose fits to the epipolar constraint. The same measure can
also be computed the other way around. For computation of the epipolar line
li the transposed essential matrix E;‘QL,g in combination with p. , can be used
as described in Equation 2.11. The point to line distance d(li,p;) describes as
a second measure how good the pose estimation fits. The resulting cost function
computes the two-dimensional residual

6(935132—17132;) = (d< ;mi);c)>d< ;’iﬁ—l?ﬁ;{}—l))T' (414)

Since for the computation of the essential matrix the scale of ¢;_;; can be ar-
bitrary the presented cost function has only influence on the direction of ¢,_ .
Nevertheless the incorporation of this cost function into the optimization problem
adds more information about the correct relative pose.
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The uncertainty of the key point locations is described as a normal distributed
with zero mean. Its standard deviation was chosen heuristically as

~ 1.0px
f 3
where f denotes the average of the focal lengths f, and f, in pixels. The division

by f is necessary to transform the pixel value into image coordinates. With o,
the covariance matrix

Oer

(4.15)

¥ = diag(oZ,, 02.), (4.16)

er’ er

is defined. It is used to standardize e(x;d) and r(x,c).






Chapter 5

IMU Preintegration on a Manifold

An inertial measurement unit is a sensor system that is able to measure inertial
forces to derive information about its motion. The sensors that are contained
in this system are three orthogonal rate-gyroscopes for measuring angular veloc-
ity and three orthogonal accelerometers for measuring linear acceleration. This
enables to derive a fully 3D pose from the IMU measurements over time.

Quadrotors typically use IMUs in combination with a stereo camera that are
microelectromechanical systems (MEMS) . They are cheap, lightweight and have
a small form factor but come with the trade off that their measurements are to
inaccurate in order to use them alone for a precise motion estimation. For example
Woodman showed in | | that after one minute the position error for his pure
IMU based navigation system is around 150 meter.

The benefit of combining an IMU with a stereo camera comes from the com-
plementary properties of sensing motion of both sensors. An IMU measures the
forces that affect it self, when it is moved and belongs therefore to the category
of propriocetive sensors. In contrast a camera measures the appearance of the
environment as an image and belongs to the exteroceptive sensors. The motion
measurements from both sensors are therefore independent but should predict the
same motion. This makes it possible to fuse them into a single motion estimation
problem and take advantage of the measurements from both sensors.

As mentioned in Section 1.1 approaches to combine an IMU with cameras can
be divided into loosely and tightly coupled ones. In this work a tightly coupled
approach is presented. The integration will be achieved by adding two additional
cost functions to the in Section 4.4 to a nonlinear optimization problem. Since
an IMU usually produces measurements at a much higher frequency than a stereo
camera the nonlinear optimization problem would grow rapidly by integrating
every single IMU measurement. To avoid this and make it possible to find a proper
solution in an acceptable time the IMU measurements will be preintegrated based
on the approach by Forster et. al. | -

45
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Due to the complexity of the integration of an IMU in such an algorithm
only the integration of the gyroscope is presented. The position estimation of
the visual-inertial sensor unit will instead be derived from image correspondences.
However the precision of the stereo visual-inertial algorithm will gain in attitude
and position accuracy.

In the following, an introduction to the special orthogonal group SO(3) will be
given in Section 5.1. This is needed since it is used during the definition of the
residuals for the gyroscope. After that the characteristics of a MEMS Gyroscope
will be introduced in Section 5.2. Building up on the characteristics of a gyro it
can be explained more in detail, why it is useful to preintegrate the gyroscope mea-
surements in Section 5.3. In the last Section 5.4 then the gyroscope preintegration
and its incorporation into a nonlinear optimization problem is explained.

5.1 Special Orthogonal Group SO(3)

The special orthogonal group SO(3) is the group of 3D rotation matrices. Formally
this group can be defined as

SO(3) = {R € R**: R'"R = Id3,det(R) = 1}, (5.1)

with the matrix multiplication as group operation and the transposed matrix as
inverse. A property of the group is that it is a smooth manifold. This means that
the group behaves locally like a Euclidean space but not globally. An illustration
of this relationship can be seen in Figure 5.1. The space on the sphere behaves
not Euclidean but a limited tangent plane at some point on the sphere does. In
theory the tangent plane is part of the tangent space belonging to the manifold,
which is also denoted as Lie algebra or s0(3). The Lie algebra consists out of skew
symmetric matrices, which can be used to express small rotations in an Euclidean
space. By making use of the hat operator A which maps a vector w = (w,, wy, w,)
to a skew symmetric matrix:

0 —w, wy
S=w'=| w, 0 —wy|, (5.2)
—Wy Wy 0

the so called ezponential map can be defined. The exponential map exp : s0(3) —
SO(3) maps an element, which is close to identity of s0(3), to a rotation matrix in
SO(3) and is defined as

sin [| ||
]l

1 — cos([[¢l])

N = Id
exp(¢”) = Idz + 9]

¢" + (@)% (5.3)
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o)

Figure 5.1: Illustration of a manifold as a surface of a sphere. A manifold behaves
globally not Euclidean but locally like the surface of the sphere in the figure does. By
making use of the logarithm map Log a rotation matrix R can be mapped from SO(3)
to a vector in ¢ € IR?, where a uncertainty of ¢ can be defined as a normal distribution
with zero mean. A small correction ¢ + d¢ of ¢ can then be mapped back to SO(3) by
the exponential map Exp.

It will later be used to define a rotation matrix from the measurements of a triple
gyroscope. A detailed derivation of the exponential map can be found in [Woo07].

The inverse of the exponential map is the logarithm map log : SO(3) — s0(3).
It maps a rotation matrix R # Ids but close to Id; to a skew symmetric matrix:

log(R) = % with ¢ = cos™ (%) : (5.4)

From the obtained skew symmetric matrix S € s0(3) then its corresponding
vector w can be extracted by making use of the vee operator V:

w=2_8". (5.5)

For notational convenience additional versions of the exponential and logarithm
map that operate direct on vectors:

Exp : IR? — SO3) ; ¢ — exp(¢")
Log : SO(3) — IR? . R — log(R)Y, (5.6)

are used in the following.

5.2 Characteristics of MEMS Gyroscopes

With the relative pose G between the frame of the left camera ¢; and the frame
g of the gyroscope the absolute pose of the gyroscope can be computed. This
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Figure 5.2: Illustration of the inertial stereo camera model. The relative pose G
specifies the geometric relation between the left camera frame ¢; and the gyro frame g.
By concatenating the absolute pose C; of the stereo camera and the relative pose G, the
absolute pose of the gyroscope can be computed.

relation is shown in Figure 5.2, where the gyroscope frame is shown in relation
to the already from Section 4.2 known coordinate frames of a stereo camera. The
relative pose G can be derived during a calibration process. A calibration toolbox
like Kalibr' can be used, for this. Here the calibration will not be explained in
more detail since it is beyond the scope of this thesis.

A triple axis MEMS gyroscope consists out of three orthogonally arranged
single-axis rate gyroscopes. They measure the rotational rate for their axis for one
point in time. The measurements are then summarized as a single measurement
by the triple axis gyroscope. Consequently direct information about 3D angular
motion can be obtained from a gyroscope. The measurements are affected by
small errors but do not contain outliers as long as the values that have to be
measured are in the measurement range of the gyroscope. However the small
measurement errors are not negligible and lead to a drift when the orientation
of the gyroscope is tracked. The mathematical model, which is used to describe
gyroscope measurements describes the errors by a sensor bias b(¢) and additive
white noise n(t) at time t.

The sensor bias is a slow varying offset from the real angular velocity. It can
be observed when the gyroscope is not undertaken any rotation. A simple method
to compute an initial gyroscope bias is to average the gyroscope output over a few
seconds. However the gyroscope bias changes slowly over time and is therefore

'Kalibr web page: https://github.com/ethz-asl/kalibr
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Preintegrated _
rotation:
Gyroscope:
Images: = u
Time: p—+—+—+—+—+—+—+—+—+—F—+—+—+—+—+—+—+—+—
i 1+1 Z-z; :
Figure 5.3: Tllustration of data rates during preintegration | |. Two stereo

image pairs visualized by the two cyan squares are captured at two points in time ¢ and
j. The gyroscope measurements, visualized as orange crosses, sampled after every time
period At. To reduce computational effort the sampled gyroscope measurements are
summarized as a preintegrated rotation measurement, which is visualized as green circle
with a line.

modeled as a random walk. A random walk consist out of a series of steps, where
for each step the direction and size is randomly determined | |. Therefore
the bias is assumed as a normally distributed random variable with bias stability
n®, which expresses how quickly the bias changes over time. The additive white
noise fluctuates much faster than the sampling rate of the sensor. It consists out
of uncorrelated random values with a zero mean and the noise strength 1. Like
the bias change it is also modeled as a random walk.

By making use of b(t) and n(t) the gyroscope measurement at time ¢ can be
defined as

w(t) =w(t)+b(t) +n(t), (5.7)

where w(t) is the angular velocity without any noise. A more detailed introduction
to the gyroscope noise model can be found in the appendix of | |-

The data rate at which the angular rate from a gyroscope is received lies usually
between 100Hz and 1kHz. This is much higher than the image rate of a stereo
camera | |, which causes several gyroscope measurements to be made
between two image pairs. An illustration of the different frequencies at which
images and gyroscope measurements are received can be seen in Figure 5.3. For a
period of time At between two points in time ¢ and ¢+ At the discrete measurement
w(t) is assumed to be constant.
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5.3 Naive Gyroscope Attitude Tracking

In order to track the attitude of the gyroscope its discrete measurements have to
be integrated over time. The measurements are considered to be constant for a
period of time At between two gyroscope measurements. Since it is known that
the measurements are affected by white noise and a bias, the estimated noise term
as well as the bias at time ¢ can be considered. This is done by reformulating
Equation 5.7 to:

w(t) = &(t) = b(t) - n(t), (5.8)

where ¢ denotes the discrete white noise. Its covariance is a function of the
sampling rate and relates to the continuous noise n by Cov(n?(t)) = 5;Cov(n(t))
[ |. With a known attitude R(t) the attitude at ¢ + At can be computed

| R(t + At) = R(t)Exp((©(t) — b(t) — nd(t))At). (5.9)

From Equation 5.9 it is already possible to derive a cost function, which could
be integrated into an nonlinear optimization problem. But this would increase
the number of cost functions as well as the number variables in the state of the
mathematical model. It would increase by values that determine the current ori-
entation of the gyroscope and its bias estimate for every orientation measurement.
In consequence the motion estimation would become much more computationally
complex.

5.4 Gyroscope Preintegration

The gyroscope preintegration has the goal to reduce the number of states that
need to be estimated during the nonlinear optimization. Therefore the set G, ;
of gyroscope measurements between time ¢ and j of two consecutive stereo image
pairs can be summarized to one integrated rotation measurement:

j—1

R;; = [ [ Exp((@r — b — i) At). (5.10)
k=1

This product still contains the white noise and slowly changing bias terms, which
cause R; ; to be inaccurate if they are not correctly estimated.

To solve this problem the white noise is isolated in a first step. Therefore b; is
assumed to be constant between ¢ and j:

bi - brL'Jrl = ... = bjfl. (511)
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Then Equation 5.10 is transformed by making use of a first order approximation
into

Rivj = R@]( )EXp( 5¢z]) > (512)

where R; ;(b;) = [[._} Exp(@y — by) is called the preintegrated rotation measure-
ment computed for the constant bias b; and d¢, ; is the isolated noise term. This
term expresses how the noise has been propagated over time. It enables to define
the uncertainty in s0(3), being normally distributed with zero mean.

In s0(3) the uncertainty is defined by a covariance matrix X7, which is itera-
tively computed during the preintegration. A complete derlvatlon of the iterative
computation of EZj can be found in the supplementary material of | -

To integrate the slowly-varying bias changes into this model it would be possible
to recompute the preintegrated rotation measurement every time when the bias
changes. While this would be computationally very expensive it is possible to
approximate a change of R”(bl) caused by a small correction db of the bias with
a first order expansion:

~ OR,;
R, ;(b;) ~ R, j(b;)Exp ( ab’j 5b) (5.13)
where 81;) ;.;(b;) with respect to b;. It describes how

the preintegrated rotation measurement changes due to bias changes and can be
iteratively Computed with the preintegrated rotation measurement. A complete
derivation of mZ)J can be found in the supplementary material to | |-

With the integration of the bias updates in Equation 5.13 now the residual for
the preintegrated rotation measurement can be defined. Let R; and R, be the
estimated orientation of the gyroscope at time ¢ respectively j. Then the residual
vector for the preintegrated rotation measurement is defined as:

T aR Yilig ’ T

It computes the difference between the predicted relative orientation RZ-TRJ» of the
gyroscope and the preintegrated rotation measurement in so(3) by making use of
the logarithm map. In order to model the uncertainty of the preintegrated rotation
measurement the previous computed covariance matrix E”j can now be used to
standardize g(x, G; ;) with the Mahalanobis distance as described in Section 4.1.
As a last step the bias updates have to be integrated into the optimization
problem. This needs an extension of the state x, to which the bias estimate b;
is added. For integration of the bias it is assumed that it changes over the time
interval At; ; by a discrete noise 4. The bias b; at time j is then defined as:

b; = b, + . (5.15)
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As mentioned in Section 5.2 the bias change is modeled as a random walk. The
noise of the random walk has zero mean and covariance E?g = At; j;Cov(n®). With

this the residual:

can be defined, which is standardized with ZR?.



Chapter 6

Stereo Visual-Inertial Odometry for

UAVs

In the previous chapters different parts of the stereo visual-inertial odometry prob-
lem and possible algorithmic solutions to them have been explained. Based on
these algorithms a concrete procedure of a stereo visual-inertial odometry algo-
rithm can be defined.

To use this algorithm in practice it was implemented in modern C++11. In
order to let a software framework make use of the algorithm, interfaces that enable
to pass IMU and stereo image data to the algorithm are needed. Vice versa
the algorithm can pass computed poses and status informations to the software
framework.

As a main goal of this thesis that was previously defined in Section 1.2 the
developed algorithm should be integrated into the Aerostack framework. Due to
this the algorithm was integrated into Aerostack by making use of the mentioned
interfaces. This enables an UAV that works with Aerostack to use the presented
stereo visual-inertial algorithm for navigation.

The rest of the chapter is structured as follows. In Section 6.1 the connections
of the algorithms that solve the single part problems for stereo visual-inertial
odometry is explained. After that a short introduction to the main characteristics
of Aerostack is given in Section 6.2 followed by an description of how the algorithm
was integrated into Aerostack in Section 6.3.

6.1 Stereo Visual-Inertial Odometry Algorithm

The schema drawing in Figure 6.1 gives an overview about the developed algorithm
and should support the following explanations.
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Figure 6.1: Stereo visual-inertial odometry pipeline. The figure visualizes the single
algorithmic steps and data flows during the execution of the stereo visual-inertial odom-
etry algorithm. Therefore boxes with rounded corners indicate algorithmic processes and
boxes with top corners data. The data flow is shown by arrows. Since the visual odometry
algorithm is able to estimate motion without the data of the IMU, IMU measurements
are surrounded by a dashed frame that indicates that they are optional.

Initial pose

Before the stereo visual-inertial algorithm can operate the sensor unit has to be
calibrated. During this separated process the distortion coefficients, the intrinsic
camera parameters, and the extrinsic camera parameters of the stereo camera are
determined. In case that a stereo visual-inertial sensor unit is used the relative
pose of the IMU to the stereo camera has to be computed also. Additionally, an
initial value for the gyroscope bias has to be estimated before every start of the
algorithm. It might be different with every start up of the IMU especially after
a longer time. The wrong initialized bias would result in a drift of the computed
trajectory that is stronger than for a correct initialized bias.

In the first step during operation of the algorithm it is initialized. Process
parameters are loaded by this and variables are set to an predefined value. Here
especially the initial pose of the camera system with respect to a global coordinate
system has to be mentioned. This pose is important since the odometry algorithm
will compute the motion relative to it, as explained in Section 4.

The first stereo image pair from the stereo camera needs special treatment. This
is since no previous image pair exists to which a relative pose can be computed.
Therefore it is stored until another stereo image pair is received from the stereo
camera. However, the initial absolute pose is provided by the algorithm.

When a second stereo image pair at time j is passed to the algorithm, it starts
to process the stored image pair from time 7. On both images FAST key points
are detected in a first step that is followed by bucketing for both images. For the
key points from the left and the right image then Rotated BRIEF descriptors are
computed. By making use of the descriptors and the calibration data of the sensor
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unit a constrained matching is performed to obtain key point correspondences
between the left and right image. Additionally, tracking between the stored and
the newly received left image is performed.

For key points which could be tracked and matched at the same time point
correspondences with key points in three images exist. These key point correspon-
dences can be used to triangulate 3D points using corresponding points of the left
and right stereo image from time ¢. The 3D points are then in the coordinate frame
of the left stereo camera. Since the key points in the stored image that belong to
the 3D points are known it is possible to deduce the corresponding key points in
the left stereo image at time 7. In this way 3D to 2D point correspondences can be
stored in a set C; ;. For key points that were only tracked in the left stereo image
between time ¢ and j the resulting correspondences are stored in the set D, ;.

The motion estimation of the stereo visual odometry algorithm starts with the
computation of an initial relative pose. This is done using the algorithm presented
in Section 4.3. It processes 2D to 2D point correspondences for which also 3D to
2D point correspondences exist. After that a nonlinear optimization problem is
solved in order to refine the initial pose. It minimizes a sum over the cost functions
presented in Section 4.4 and 5.4 by adapting the in Equation 4.8 defined state.
Therefore it is defined as

2
argmln— Z PTukey Hr(m ¢ ||2}er Z PTukey ||€ )Hzer) (6]‘)

CGCZ i deDz g

In order to make the motion estimation robust the Tukey loss function is applied
to the individual summands.

Gyroscope measurements can optionally be integrated into the nonlinear mo-
tion estimation problem. The integration is simply done by adding the residual
from Equation 5.14. In order to estimate the gyroscope bias correctly a cost func-
tion that computes the residual from Equation 5.16 is added too. Since there are
no outliers for the gyroscope measurements and its bias estimate the trivial loss
function is applied to their computed residuals. The optimization problem for the
stereo visual-inertial odometry algorithm is therefore defined as

argmln— > prukey (7 (250)[[55) + Z prukey (Jle (2 d)[[55er) +
CECZ j dGD»L] (62)

1
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After motion estimation the estimated relative pose is concatenated with the
previously computed absolute pose and the new pose is provided by the algorithm.
Furthermore, the last received stereo image pair is stored. This is the final pro-
cessing step for one stereo image pair. After receiving a new stereo image pair
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the algorithm starts again with the matching and tracking procedure for another
iteration.

6.2 Aerostack Framework

Aerostack is an open source software framework for aerial robotics. Its goal is to
provide versatile software that can easily be used in a broad field of applications
for UAVs with a high degree of autonomy. A special feature of Aerostack is its
software architecture that allows a human operator to potentially control multiple
robotic agents that can interact as a swarm. The architecture of the software that
runs on a robotic agent can be described as five stacked layers.

e The social layer contains a communication system. It provides capabilities
for human-robot interaction as well as for robot-robot interaction over a
network connection.

e The supervision system of the reflective layer supervises the internal state
of a robotic agent and tries to react on possible events or problems like an
unexpected obstacle. The current state can be reported to other robots or
the human operator through the social layer.

e In the deliberative layer abstract solutions to complex tasks like the compu-
tation of a trajectory are generated by a planning system. It incorporates
feedback from the reflective layer and provides state informations to it at the
same time.

e The erecutive layer generates concrete behavior sequences from the abstract
solutions of the deliberative layer by an executive system. Furthermore, a
situation awareness system integrates an internal state of the robotic agent
from sensor information.

e The reactive layer communicates with hardware interfaces and reads sen-
sor information, which are passed to the executive layer. Furthermore, it
translates the behavior sequences from the executive system into specific
commands for the hardware interface.

In each layer run several programs that are called processes in the Aerostack ter-
minology. Each of these processes is responsible for one specific task during the
operation of an UAV like for example obstacle recognition. For the inter process
communication Aerostack utilizes the open source Robot Operating System (ROS).
The key components of a ROS systems are a roscore and so called ROS nodes that
correspond to processes in Aerostack. The roscore connects the ROS nodes using
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Figure 6.2: Schema of the algorithm integration into Aerostack. A roscore organizes
the communication between ROS nodes. The stereo visual-inertial odometry algorithm
is integrated in a stereo visual-inertial odometry node that implements an Aerostack
interface. It receives input data via ROS topics from ROS-nodes that interface with
hardware, visualized by the dotted border. The computed visual odometry pose is then
sent to a location and mapping node.

ROS topics. On each topic a specific type of data in form of ROS messages can
be sent between nodes. Based on this modular architecture Aerostack provides
many nodes whose tasks range from interfacing with UAV hardware to nodes that
execute a complete mission plan. Additionally, due to the fact that Aerostack is
a ROS based framework also ROS nodes, provided by the ROS community, can
easily interface with it | |-

6.3 Aerostack Integration

The implementation of the stereo visual-inertial algorithm is realized in modern
C++11. Figure 6.2 visualizes the mode of implementation. An instance of the class
StereoVisualInertialOdometer stores parameters for the stereo visual-inertial
odometry algorithm and implements it. The gyroscope measurements and the
stereo image pairs can be added to the algorithm through two separated methods.
When a stereo image pair is added the computation of a relative pose is triggered
automatically except for the first image pair. In case of the first stereo image pair
the initial pose is provided directly by the algorithm.

In order to interface with Aerostack a stereo visual-inertial odometry node cre-
ates an object of type StereoVisualInertialOdometry that inherits from the
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abstract Aerostack class DroneProcess. The abstract methods that had to be
implemented for this are responsible to initialize, start, and stop the odometry
algorithm. While the node is running it receives IMU measurments and stereo im-
age pairs through messages and passes them to a StereoVisualInertialOdometer
object. After processing, the computed absolute pose is send to a location and
mapping node on the executive layer.

For synchronized stereo image pairs a visual-inertial sensor unit node sends an
electric trigger signal to two iDS uEye cameras. Their images are read and sent
as ROS messages by two ROS uEye Cam nodes. Additionally, the visual-inertial
sensor unit node is prepared to send IMU measurements. All these hardware
related nodes work on the reactive layer of Aerostack.



Chapter 7

Evaluation

Evaluation of stereo visual-inertial odometry algorithms is often done by making
use of existing datasets. They provide the data necessary for the algorithm to
work as well as the ground truth trajectory to which the computed results of the
algorithm can be compared. This evaluation method has the advantage that it
allows for easy comparison based on common error measures. They have different
properties and are used to measure different quality criteria.

In the thesis at hand the visual odometry datasets of the KITTI Vision Bench-
mark Suite and the European Robotics Challenge (EuRoC) datasets' | |
are used for evaluation. Since the KITTI datasets only provide images of a stereo
camera, the evaluation focuses on the EuRoC datasets which also provide IMU
data. The KITTT datasets provide a benchmark list that uses its own error mea-
surements, which were also implemented in this work. For evaluation of the EuRoC
datasets the absolute trajectory error (ATE) will be used. It was introduced by
| | to measure the global consistency of trajectories from SLAM algorithms.
However, recently | | use this method for evaluation of visual odometry algo-
rithms on the EuRoC datasets and was therefore chosen. Additionally it provides
the possibility to evaluate with ground truth trajectories which do not contain
orientation information. This is partially the case for the EuRoC datasets.

The remainder of this chapter is structured as follows. In the first Section 7.1
the properties of the used datasets will be presented. After that in Section 7.2
two common error measurements, which are used during the evaluation will be
explained. Building up on these explanations an evaluation of the stereo visual
odometry algorithm with the KITTT datasets is done in Section 7.3. In the next
Section 7.4 the influence of the gyroscope to the trajectory reconstruction will be

'EuRoC datasets web page: http://projects.asl.ethz.ch/datasets/doku.php?id=
kmavvisualinertialdatasets
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Figure 7.1: Images of the EuRoC hexacopter and machine hall environment. In Figure
(a) shows the hexacopter, which was used to record the datasets. In front the visual-
inertial sensor unit is shown with plotted frames of reference for the single sensors. At
the top of the hexacopter the marker for pose tracking is mounted. Figure (b) gives an
representative overview of the machine hall environment [BNG " 16].

evaluated on the EuRoC datasets. Finally in Section 7.5 a runtime evaluation is
done.

7.1 Datasets

The odometry datasets of the KITTI Vision Benchmark Suite were recorded from
a moving car in urban environments. The 22 datasets are split into eleven training
datasets and eleven datasets for evaluation. A special feature of the KITTI Vision
Benchmark Suite is that algorithms can be uploaded for evaluation on a web page.
For all submitted algorithms a leader board is provided that enables to compare
the performance of different visual odometry methods. The stereo camera system
of the car was equipped with two grayscale and two color cameras, which capture
stereo image pairs with 10 frames per second. During the tests presented in this
thesis the rectified grayscale stereo image pairs with a resolution of 1241 x 376 pixels
where used. They have the property that epipolar lines are horizontal and that
corresponding points have the same vertical position. As a result of rectification
the images are sharp in the image center but blurred in the border areas. Moreover,
the images show moving objects like vehicles or pedestrians that can cause outlier
image correspondences. The ground truth information of the datasets is provided
as a 6D pose. These were computed from a GPS receiver with an integrated IMU.
Note that the IMU is only used to compute a accurate ground truth trajectory
and is not provided in the odometry datasets [GLU12].
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The EuRoC datasets contain data records captured with the hexacopter shown
in Figure 7.1a. It is equipped with a visual-inertial sensor unit. The synchronized
sensor system consists of two monochrome cameras with a resolution of 768 x
480 pixel capturing images at 20 Hz and an IMU providing gyroscope as well
as accelerometer data at 200 Hz. The eleven datasets were captured in three
different environments with different properties. Vicon room 1 (VC1) datasets are
captured in a bright room which already has been shown in Figure 2.4b and 3.2b.
In contrast images from Vicon room 2 (VC2) dataset were captured in the same
room with covered windows and different obstacles. From both environments exist
respectively datasets with three levels of difficulty (V1-1 and V2-1 easy; V1-2 and
V2-2 medium; V1-3 and V2-3 difficult) resulting from slow to fast motion speeds
and good to bad lighting conditions. As an additional challenge slightly moving
curtains are visible on some datasets. They can cause outliers that are hard to
detect due to their small variations in image space. As ground truth of these
datasets a full 6D pose is provided captured by a Vicon motion capture system.
The remaining 5 datasets were recorded in a machine hall (MH) environment.
These datasets only contain the ground truth position captured by a Leica laser
tracker. The degrees of difficulty are here also divided into three levels (MH-1
and MH-2 easy; MH-3 medium; MH-4 and MH-5 difficult) caused by different
motion speeds and lighting conditions. A representative image of the machine hall
environment is shown in Figure 7.1b.

7.2 FError Measurements

The KITTI Visual odometry and SLAM evaluation uses its own error measures
to evaluate translational and rotational error separately. In order to define these
errors let p; € SE(3) be the estimated absolute pose for a stereo image pair @
and p, € SE(3) the corresponding absolute ground truth pose. The relative pose
0, € SE(3) between two poses p; and p; of a stereo image pair j is then defined
with the inverse pose composition operator © as

d;; =p,; OD; (7.1)

The operations Z(-) and || - || extract then the angle of the rotation respectively
the Euclidean norm in meter of a pose.

Additionally, a set F' of stereo image pairs (i,7) € F has to be defined. For
this set ||F'|| denotes the overall Euclidean length of all (i,7). Based on this a
rotational error measurement

1 ~
CErot (F) = — Z Z((‘ii,j e 6i,j) (72)
[ 2,
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with the unit [deg/m]| and a translational error measurement

1 ~
Erans(F) = m Z Héz}j © 51}3‘” (7-3)
(

1,j)EF

which defines the error in percent of || F'||. In the case of the KITTI error measures
¢ and 7 must not be consecutive stereo image pairs. By analyzing the code of
the odometry development kit from the KITTI web page it can be seen that i
is increased in steps of 10 image pairs. Than for each 7, j is chosen in a way
that ||8; ]| is greater than a segment length [ € IR". In case of KITTI this is
done for all [ € {100,200, 300, 400, 500, 600, 700,800}, where [ has the unit meter
[ |. The error values that are presented for the ranking in the benchmark
list are defined as the average of the error measures for all datasets.

The absolute trajectory error (ATE) was introduced by | | to measure
the global consistency of trajectories from SLAM algorithms. In a first step, the
algorithm aligns the computed trajectory with the ground truth trajectory in a way
that the squared mean distance between the positions of corresponding poses on
both trajectories are minimal. For instance, the method developed by Horn | |
allows for this. From all distances between these poses the root mean square error
is computed. Since the ATE measures the global consistency, it would compute
for a trajectory that contains a large pose error in its middle but perfect estimated
relative poses at all other places a high error value. In contrast a trajectory that
contains several small rotation errors can achieve a better ATE error value.

7.3 Accuracy on KITTI Datasets

The evaluation of the stereo visual odometry algorithm was executed on two KITTI
training datasets. The first dataset is KITTI 00 and has a total length of ap-
proximately 3723 meters. KITTI 02 is the second dataset and has a length of
approximately 5065 meters.

The reconstructed trajectories of both datasets shows Figure 7.2 as a projection
into the xy-plane. Note that in this common type of visualization the drift of
the trajectory in direction of the z-axis is not visible. For both datasets the
accumulation and the resulting drift is clearly notable in the visualization of the
trajectory. However, the algorithm does not loose the track at any place of the
reconstructed trajectories. The computed error measures for both datasets are
shown in Table 7.1. Notably, the result on KITTI 00 is better than on KITTI 03
for the ATE. Nevertheless, for the two KITTT error measurements the algorithm is
better on the dataset KITTI 03. This opposed result comes from the characteristics
of the KITTI 00 dataset. It has many overlapping trajectory paths on shorter
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Figure 7.2: Reconstructed trajectories in xy-plane for datasets KITTI 00 and KITTI
02 The algorithm is able to track the trajectory over the full dataset in both cases despite
a small drift.

trajectory length in combination with a smaller spatial extension. This makes it
possible to align ground truth and reconstructed trajectory close to each other.
The computed KITTI error measurements enable a coarse classification of the
algorithm into the KITTI leader board as an orientation of its performance. Note
that this comparison has due to the fact that the leader board was computed
on more and other datasets only a limited validity. An extraction of the leader
board containing only visual odometry methods can be found in Appendix A.
The leader board is sorted ascendingly by the KITTI translation error. For this
sorting the presented method can be classified approximately to place 10. The
best method concerning the translation error is SOFT2 with a value of 0.81%.
It is obviously based on SOFT| | that achieves a translation error of 0.88%.
The SOFT algorithm uses a more complex feature matching and tracking stage
in combination with a motion estimation that utilizes the 5 point-algorithm and
nonlinear optimization. Also the ROCC| | (Robust Outlier Criterion for
Camera-based Odometry) method that was developed in the context of automotive
applications has to be mentioned. It achieves a translation error of 0.98% and
focuses on feature selection, which is done by selecting outliers in an iteratively
manner. For this a new normalized reprojection error measure is used. Of this
method, two more variants RotROCC| | with 0.88% and HypERROCC with
0.88% perform better than the method presented in this thesis. For HypERROCC
also no reference is given but due to the name of the method and the name of the
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dataset ATE [m]| | eirans(F)% | €ror(F)[deg/m]
KITTI 00 | 5.12 1.00 0.0032
KITTI 02 | 8.01 0.94 0.0031

Table 7.1: Evaluation results on KITTI datasets.

Vi1-1 V1-2 | V1-3 | V2-1 | V2-2 | V2-3
stereo visual 0.66 0.47 - 0.55 0.70 -
stereo visual-inertial | 0.21 0.19 - 0.42 0.68 -

Table 7.2: ATE values for the results of the EuRoC Vicon room 1 and 2 datasets in
meter.

author it can be assumed that it is a modification of ROCC. The other methods
better than place 10 achieve similar results but for them no references are given.
The rotation error of the developed algorithm lies for KITTI 00 at 0.0031
[deg/m]| and for KITTT 02 at 0.0032 [deg/m]|. These values are slightly higher
than the values of the top methods in the benchmark list but still comparable.

7.4 Influence of the Gyroscope

The gyroscope measurments of the EuRoC datasets allow evaluating the gyroscope
influence on the accuracy of the visual odometry algorithm. On all datasets the
algorithm was ran with processing and without processing gyroscope data. During
each test, all images and gyroscope data were processed by the algorithms in order
to obtain comparable results. Table 7.2 displays the ATE values for the results of
the Vicon room datasets. Excepted for the datasets V1-3 and V2-3 the stereo visual
odometry algorithm and the stereo visual-inertial algorithm are able to preserve
the global consistency of the reconstructed trajectory in a way that it makes sense
to measure the accuracy with the ATE. In all four cases the algorithms compute
several times a wrong translational part of the relative poses. This happens due to
the lack of correct key point correspondences and makes an interpretation of the
ATE difficult and potentially misleading. One reason for the translational error is
that the brightness between two consecutive stereo image pairs can change strongly
in dataset V1-3. The camera is in these cases often directly oriented towards
large windows which cause the auto exposure to change quickly and therefore the
brightness of the images also. In case of V2-3, the key point correspondences are
not found due to strong motion blur, different auto exposure settings for the left
and the right stereo camera, and only little texture when the camera is oriented
towards a white wall.
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Figure 7.3: Reconstructed trajectories in xy-plane for the dataset EuRoC V1-2. The
stereo visual as well as the stereo visual-inertial odometry algorithm are both able to re-
construct the whole trajectory. Nevertheless, the trajectory in Figure (b) reconstructed
by the stereo visual-inertial algorithm runs nearly in parallel to the ground truth trajec-
tory. A place at which small jumps of the trajectory are notable is marked with a green
dashed circle.

For all other Vicon room datasets, the algorithms are able to track the tra-
jectory, which is according to the ATE measures with the stereo visual-inertial
algorithm more precise than for the stereo visual odometry algorithm. The recon-
structed trajectories for V1-2 can be seen in Figure 7.3. In these visualizations,
the difference of the reconstruction quality can be seen clearly. The result from
the stereo visual odometry algorithm in Figure 7.3a has more drift than the one
of the stereo visual-inertial algorithm in Figure 7.3b. Therefore the reconstructed
trajectory in Figure 7.3b runs close to the ground truth trajectory. However, some-
times small jumps in the trajectories are noticeable. These are in the trajectory of
the stereo visual-inertial algorithm more pronounced than for the trajectory of the
stereo visual algorithm. At these points, the optimization algorithm of the motion
estimation converges to a wrong local minimum.

For the datasets from Vicon room 2 the ATE values are in general higher than
for Vicon room 1. One reason for this is a permanent drift in the z-axis and less key
point correspondences due to the darker images with lower contrast. At the same
time, these datasets also reveal improvements of the integration of the gyroscope.
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MH1 MH2 | MH3 | MH4 | MH5
stereo visual 0.13 0.20 0.49 2.62 1.20
stereo visual-inertial | 0.18 0.11 0.31 0.33 0.41

Table 7.3: ATE values for the results of the EuRoC machine hall datasets in meter.

On the machine hall datasets both algorithms were able to track the complete
trajectories of the UAV. The reason for this is that the feature tracking and match-
ing of these datasets is easier since the optical flow is in general slower than in
case of the Vicon room datasets. In Table 7.3 the ATE values for the machine hall
datasets are shown. For both algorithms the ATE values rise with the degree of
difficulty of the datasets. Except for MH1 the ATE values improved by integrating
the gyroscope data into the visual odometry algorithm. The slight deterioration
might result from a wrongly estimated initial gyroscope bias value. The recon-
structed trajectories for MH1 can be seen in Figure 7.4. Since the ground truth
data does not provide orientation information, the first 1100 absolute sensor poses
were used to compute a transformation that align both trajectories by using Horns
method. It is possible to observe the drift of the computed trajectory by aligning
the ground truth and the computed trajectory with this transformation. In case
of Figure 7.4 it can be noticed that the accumulated drift for the trajectory of the
stereo visual-inertial algorithm is much greater than for the one from the stereo
visual odometry algorithm.

For all other datasets, the ATE values improved due to the incorporation of the
gyroscope into visual odometry algorithm. Especially, the more difficult datasets
show strong improvements. Here the stereo visual odometry algorithm has prob-
lems in case of difficult lightning conditions, which causes a drop in the amount of
image correspondences. The incorporation of the gyroscope helps the algorithm to
compute better rotation estimates which also improves the solutions for the trans-
lation estimation. A good example for this is dataset MH4. The visualization of
the reconstructed trajectories in Figure 7.5a was generated with the same method
as for Figure 7.4. In this visualization a green dotted circle marks the area with
only a few image correspondences. The quality of the reconstructed trajectory
in this area is much less accurate than in other parts of the reconstruction. In
comparison, the corresponding section of the reconstructed trajectory in Figure
7.5b is much more similar to the ground truth trajectory.

7.5 Runtime Evaluation

The runtime evaluation was conducted on a consumer notebook with a Intel®
Core™ i7-4850HQ 2.30GHz CPU and 16 Gb random access memory. Of the self-
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Figure 7.4: Alignment of the reconstructed trajectory with the ground truth trajectory
in the xy-plane for dataset EuRoC MHI1. It can be noticed that the reconstructed
trajectory of the stereo visual-inertial odometry algorithm accumulates more drift.

written software only the feature matching is parallelized. However, several used
function calls of the OpenCV library like the 5-point RANSAC algorithm are
internally parallelized. Also Ceres-Solver used during the optimization procedure
8 threads.

In order to evaluate the runtime of the algorithm the datasets KITTI 00 and
Vicon room 1 were chosen. On these datasets the stereo visual-inertial odometry
was run and the processing times for key point matching, key point triangula-
tion, pose initialization and pose refinement were measured. The results of these
measurements are shown in Figure 7.6.

By comparing the execution times it reveals that the total processing time for
the KITTI 00 dataset is longer than on EuRoC V1-1. The main reason for this time
intensity is that the method creates nearly twice as many image correspondences
(on average 1206 image correspondences) than EuRoC V1-1 (on average 655 image
correspondences). The different amount of image correspondences result from the
matching settings which were chosen differently due to the different characteristics
of the datasets. As a result, the times of key point matching, pose initialization,
and pose refinement are higher for KITTI 00 than for EuRoC V1-1. During the
nonlinear optimization more cost functions that make use of the epipolar constraint
are used. They are expensive to compute and cause high run times. Additionally,
the computation time increases also through the high number of state updates that



68 CHAPTER 7. EVALUATION

—— Ground Truth
10.0 7 10.0 7 Our Result

7.5 7.5
5.0 5.0
g 25 g 25
~ 001 ” 0.0 1
—2.5 —2.5 1
—5.0 A —5.0
—7.5 —7.5

T T T T T T

0 10 20 0 10 20

x [m] X [m]
(a) MH4 stereo visual odometry result (b) MH4 stereo visual-inertial odometry result

Figure 7.5: Alignment of the reconstructed trajectory with the ground truth trajectory
in the xy-plane for dataset EuRoC MH4. The stereo visual odometry algorithm accumu-
lates more drift. It can also be noted that it has problems to reconstruct the trajectory
in the area marked with the green dashed circle. In this area bad light conditions are
present. However, the stereo visual-inertial algorithm is able to reconstruct the trajectory
precisely.

were needed during the nonlinear optimization. Only the triangulation is faster for
KITTI 00 than for EuRoC V1-1. The optimal triangulation method needs much
less time for the rectified images from KITTI 00 than for the those from EuRoC
V1-01.

The time spent for key point matching, triangulation, and pose initialization
are for the stereo visual and the stereo visual-inertial odometry algorithm on the
EuRoC V1-1 dataset similar. This meets common expectations, since both test
runs used the same parameters. The pose refinement of the stereo visual-inertial
algorithm is 6 ms faster than for the stereo visual algorithm. During the prein-
tegration of the gyroscope measurements more computational effort is needed by
the visual-inertial algorithm. However, less state updates during the nonlinear
optimization are needed which saves time.
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Figure 7.6: Stacked bar chart of the algorithm processing time. The stereo visual
algorithm runs slower on the KITTI 00 than on the EuRoC V1-1 dataset due to more
image correspondences. On the FuRoC V1-1 dataset the stereo visual-inertial algorithm
is 4 ms faster than the stereo visual algorithm.






Chapter 8

Conclusion

The thesis at hand presented an adaption of Zhang’s algorithm to a stereo visual-
inertial odometry algorithm. As one of the main goals, this algorithm was inte-
grated into the Aerostack framework which is used to control UAVs.

The first chapter of the thesis started by giving an overview to stereo visual
inertial odometry in application with UAVs. After that, different solutions to the
single subproblems used by state-of-the-art stereo visual-inertial odometry algo-
rithms were given. In the following chapter the camera model and the epipolar
geometry which describes the geometric relations between two cameras were ex-
plained. Based on the epipolar geometry the optimal triangulation method which
enables a triangulation of 3D points from 2D point correspondences between two
images was introduced.

The following chapter addressed the search of corresponding image features
between two images. For the detection and description of salient image features the
FAST corner detector and the rotated BRIEF key point descriptor were introduced.
In order to find key point matches between the left and the right stereo image a
constrained matching approach based on the epipolar geometry was derived. This
approach was not used to derive image correspondences between two successive
frames however, because the KLT-tracker yielded more accurate correspondences.

The next chapter discussed the motion estimation based on image features for
stereo visual odometry. In the first section concepts of nonlinear optimization were
introduced on which the motion estimation in this thesis is based. The next sec-
tion presented to the best of our knowledge a new method to initialize the motion
estimation with a metric correct scaled translation. Subsequently, cost functions
that are used to quantify how good the estimated motion fits to detected feature
correspondences in the nonlinear optimization problem were defined. For addi-
tional robustness against outliers, the Tukey loss function was applied to suppress
incorrect correspondences.
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The previously defined stereo visual motion estimation allows an extension to
a stereo visual-inertial motion estimation which was described in the following
chapter. The approach chosen here did this by tightly integrating gyroscope mea-
surements over time. This integration was done by making use of the properties
of the special orthogonal group SO(3). Its property of being a manifold played an
important role during the definition of the cost functions of the gyroscope.

Based on these preliminary explanations the whole stereo visual-inertial odom-
etry algorithm was illustrated in the subsequent chapter. After that the concepts
of the Aerostack framework for controlling UAVs were presented. This was com-
plemented by a description of how the developed algorithm was integrated into
Aerostack.

The presented visual odometry algorithm was evaluated on two KITTI datasets
which allowed a coarse assessment of its precision in comparison to other algo-
rithms. Since these datasets did not provide IMU measurements the comparison
of the stereo visual and the stereo visual-inertial algorithm was performed on Eu-
RoC datasets. With these tests it was shown that the integration of the gyroscope
into the stereo visual odometry algorithm has positive effects on the runtime and
the accuracy of trajectory reconstruction.

There are several improvements of the stereo visual-inertial odometry algorithm
possible. One approach would be to improve the feature matching and tracking.
This could be done by integrating a more complex matching strategy into the
algorithm like circular matching. It could be applied separately to different feature
types like blobs and key points in order to match them, similar to what is suggested
by Cvigi¢ et. al. | |. IMU data could also be integrated into the process in
order to support matching and tracking by reducing the search space.

The motion estimation itself could be improved by integrating a windowed
bundle adjustment. This would require the selection of key frames on which bundle
adjustment is applied. It should reduce the drift over the whole trajectory and
increase the accuracy of the reconstructed point cloud.

Furthermore, the integration of the IMU could be extended by making use
of the accelerometer. The preintegration as it was presented for the gyroscope
measurements can be done in a similar manner with an accelerometer. Conse-
quently, the position and the velocity of the visual-inertial sensor unit would be
estimated by the IMU as well. In case of the integration of the accelerometer it
would also be interesting to determine whether its predicted change in position
can be used to initialize the motion estimation together with the preintegrated
gyroscope measurements.



Appendix A
KITTI Odometry Benchmark

The KITTI odometry benchmark gives an overview of the performance of current
odometry algorithms in general. It contains visual monocular and stereo visual
odometry methods as well as laser based odometry methods. However, here for
comparison only an over view of the visual methods is given. The datasets from
which the benchmark list was generated is not available for public. In order to
evaluate an algorithm on these datasets it must be uploaded on an evaluation
server. Since this thesis does not focus on the evaluation on KITTI datasets this
was not done. Hence the presented algorithm is not listed in the leader board.
Column description:

e Method: Contains the name of the used algorithm or method.
e Translation: The translation error, which was defined in section 7.2.
e Rotation: The rotation error, which was defined in section 7.2.

e Runtime: Runtime of the algorithm in seconds and additional information
about the number of used CPU cores. If the algorithm works on a graphics
card this is indicated by the abbreviation GPU.

The table was downloaded on 21st of March 2017.

Method Translation Rotation Runtime

1 SOFT2 0.81 % 0.0022 [deg/m| 0.1s /2 cores
2 LSLAM 0.82 % 0.0020 |deg/m| 0.2 s /4 cores
3 GDVO 0.86 % 0.0031 [deg/m| 0.09s /1 core
4 HypERROCC 0.88 % 0.0027 [deg/m| 0.25s / 2 cores
5 SOFT 0.88 % 0.0022 [deg/m| 0.1s /2 cores
6 RotRoce 0.88 % 0.0025 [deg/m| 0.3 s/ 2 cores
7 EDVO 0.89 % 0.0030 [deg/m| 0.1s /1 core
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Method Translation Rotation Runtime

8 $V02 0.94 % 0.0021 [deg/m|] 0.2's /1 core
9 ROCC 0.98 % 0.0028 [deg/m| 0.3 s / 2 cores
10 cvdxvl-sc 1.09 % 0.0029 [deg/m| 0.145s / GPU
11 MonoROCC 1.11 % 0.0028 [deg/m| 1s /2 cores
12 ORB-SLAM?2 1.15 % 0.0027 [deg/m| 0.06 s / 2 cores
13 SVO 1.16 % 0.0030 [deg/m| 0.1s /2 core
14 NOTF 1.17 % 0.0035 [deg/m| 0.45s / 1 core
15 S-PTAM 1.19 % 0.0025 [deg/m| 0.03 s / 4 cores
16 S-LSD-SLAM 1.20 % 0.0033 [deg/m| 0.07 s / 1 core
17 VoBa 1.22 % 0.0029 [deg/m| 0.1s /1 core
18 CBSLAM 1.24 % 0.0029 [deg/m| 0.04s /1 cores
19 SLUP 1.25 % 0.0041 |[deg/m| 0.17 s / 4 cores
20 FRVO 1.26 % 0.0038 [deg/m| 0.03s / 1 core
21 MFT 1.30 % 0.0030 [deg/m| 0.1s /1 core
22 TLBBA 1.36 % 0.0038 [deg/m| 0.1s /1 Core
23 2FO-CC 1.37 % 0.0035 [deg/m| 0.1s /1 core
24 StereoSFM 1.51 % 0.0042 [deg/m| 0.02s / 2 cores
25 SSLAM 1.57 % 0.0044 [deg/m| 0.5s / 8 cores
26 eVO 1.76 % 0.0036 [deg/m| 0.05s / 2 cores
27 Stereo DWO 1.76 % 0.0026 [deg/m| 0.1s /4 cores
28 D6DVO 2.04 % 0.0051 [deg/m| 0.03s /1 core
29 SSLAM-HR 2.14 % 0.0059 [deg/m| 0.5s / 8 cores
30 MEVO 2.40 % 0.0060 [deg/m| 1s /1 core

31 VISO2-S 2.44 % 0.0114 [deg/m| 0.05s /1 core
32 GT_VO3pt 2.54 % 0.0078 [deg/m| 1.26s /1 core
33 BoofCV-SQ3 2.54 % 0.0073 [deg/m| 0.14s /1 core
34 VO3pt 2.69 % 0.0068 [deg/m| 0.56 s / 1 core
35 TGVO 2.94 % 0.0077 [deg/m| 0.06 s / 1 core
36 SGPVO 3.11 % 0.0097 [deg/m| 0.2s /1 core
37 VO3ptLBA 3.13 % 0.0104 [deg/m| 0.57s /1 core
38 PLSVO 3.26 % 0.0095 [deg/m| 0.20 s / 2 cores
39 AvgSLAM 3.26 % 0.0101 [deg/m| 0.1s /4 cores
40 CFORB 3.73 % 0.0107 [deg/m| 0.9 s / 8 cores
41 VOFS 3.94 % 0.0099 [deg/m| 0.51s /1 core
42 VOFSLBA 417 % 0.0112 [deg/m| 0.52s / 1 core
43 10 6.55 % 0.0315 [deg/m| 5s /1 core

44 ST 97.70 % 0.2710 [deg/m| 0.2's / 8 cores



Appendix B
List of Tables

7.1 Evaluation Results on KITTI datasets . . . . . . ... .. .. ...
7.2 ATE values for the results of EuRoC Vicon room 1 and 2 . . . . ..
7.3 ATE values for the results of the EuRoC machine hall datasets . . .

75






Appendix C

List of Figures

1.1

2.1
2.2
2.3
2.4

3.1
3.2
3.3

3.4

4.1
4.2

5.1
5.2
2.3

6.1
6.2

7.1
7.2

7.3
7.4
7.5
7.6

Quadrotor UAV with Stereo Camera Flying Indoor . . . . .. ... 10
MMustration of the camera model . . . . . . . . . ... .. ... ... 18
[llustration of the epipolar geometry . . . . . . . . .. .. .. ... 20
Mlustration of a 3D point triangulation . . . . .. ... .. .. ... 22
Visualization of reconstructed key points from a stereo camera . . . 23
[lustration of the FAST corner detection . . . . . ... .. .. ... 27
Visualization of detected key points with and without bucketing . . 29
Visualization of BRIEF patch pairs and a histogram of bit mean

values . . . ... 31
Visualization of feature matches . . . . . . .. .. ... ... 32
Plots of the trivial and the Tukey loss function . . . . . . . ... .. 37
[llustration of the stereo visual odometry motion estimation . . . . 39
[Mlustration of a manifold. . . . . . .. ... ... ... ....... A7
[lustration of the inertial stereo camera model . . . . . . . . .. .. 48
[llustration of data rates during preintegration . . . . . . . . .. .. 49
Stereo visual-inertial odometry pipeline . . . . ... ... ... ... 54
Schema of the algorithm integration into Aerostack. . . . . . . . .. b7
Images of the EuRoC hexacopter and machine hall environment . . 60
Reconstructed trajectories in xy-plane for datasets KITTI 00 and

KITTIO2 . . . . e e e 63
Reconstructed trajectories for EuRoC V1-2 in the xy-plane . . . . . 65
Reconstructed trajectories for EuRoC MH1 in the xy-plane . . . . . 67
Visualization of the trajectory results for EuRoC MH4 in the xy-plane 68
Stacked bar chart of the algorithm processing times . . . . . . . .. 69

7






Appendix D

Bibliography

[ABH*09]

[AD15]

[AMO17]

IBKZT15]

[BNG*16]

|Bou01]

ACHTELIK, Markus ; BACHRACH, Abraham ; HE, Ruijie ; PREN-
TICE, Samuel ; ROy, Nicholas: Stereo vision and laser odometry
for autonomous helicopters in GPS-denied indoor environments.
In: Proceedings of SPIE The International Society for Optical En-
gineering 1 (2009), S. 733219-733219-10

ABEYWARDENA, Dinuka ; DISSANAYAKE, Gamini:  Tightly-

coupled model aided visual-inertial fusion for quadrotor micro air
vehicles. In: Field and Service Robotics Springer, 2015, S. 153-166

AGARWAL, Sameer ; MIERLE, Keir ; OTHERS: Ceres Solver.
http://ceres-solver.org, 2017. — Version 1.12

BEUL, Marius ; KROMBACH, Nicola ; ZHONG, Yongfeng ;
DROESCHEL, David ; NIEUWENHUISEN, Matthias ; BEHNKE,
Sven: A high-performance MAV for autonomous navigation
in complex 3D environments. In: Unmanned Aircraft Systems
(ICUAS), 2015 International Conference on IEEE, 2015, S. 1241
1250

BURRI, Michael ; NikoLic, Janosch ; GOHL, Pascal ; SCHNEI-
DER, Thomas ; REHDER, Joern ; OMARI, Sammy ; ACHTELIK,
Markus W. ; SIEGWART, Roland: The EuRoC micro aerial vehi-
cle datasets. In: The International Journal of Robotics Research
(2016)

BOUGUET, Jean-Yves: Pyramidal implementation of the affine

lucas kanade feature tracker description of the algorithm. In: Intel
Corporation 5 (2001), Nr. 1-10, S. 4

79


http://ceres-solver.org

80

[BTVGO06)

[BW16a|

[BW16b|

|CLSF10]

|CP15]

[Cra06]

[EGH16]

[EKC16]

[ESC14]

[ESWSL11]

APPENDIX D. BIBLIOGRAPHY

BAy, Herbert ; TUYTELAARS, Tinne ; VAN GooOL, Luc: Surf:
Speeded up robust features. In: European conference on computer
wiston Springer, 2006, S. 404-417

Buczko, Martin ; WILLERT, Volker: Flow-decoupled normalized
reprojection error for visual odometry. In: Intelligent Transporta-
tion Systems (ITSC), 2016 IEEE 19th International Conference
on IEEE, 2016, S. 1161-1167

Buczko, Martin ; WILLERT, Volker: How to distinguish inliers
from outliers in visual odometry for high-speed automotive ap-
plications. In: 2016 IEEE Intelligent Vehicles Symposium (IV)
IEEE, 2016, S. 478-483

CALONDER, Michael ; LEPETIT, Vincent ; STRECHA, Christoph
: FUA, Pascal: Brief: Binary robust independent elementary fea-

tures. In: Furopean conference on computer vision Springer, 2010,
S. 778792

CVISIC, Igor ; PETROVIC, Ivan: Stereo odometry based on careful
feature selection and tracking. In: Mobile Robots (ECMR), 2015
FEuropean Conference on IEEE, 2015, S. 1-6

CRraAssiIDIS, John L.: Sigma-point Kalman filtering for integrated
GPS and inertial navigation. In: IEEE Transactions on Aerospace
and Flectronic Systems 42 (2006), Nr. 2, S. 750-756

ECKENHOFF, Kevin ; GENEVA, Patrick ; HUuANG, Guoquan:

High-accuracy preintegration for visual-inertial navigation / Uni-
versity of Delaware. 2016 (RPNG-2016-001). — Research report

ENGEL, J. ; KOLTUN, V. ; CREMERS, D.: Direct Sparse Odometry.
(2016), July

ENGEL, Jakob ; ScHOPS, Thomas ; CREMERS, Daniel: LSD-
SLAM: Large-scale direct monocular SLAM. In: Furopean Con-
ference on Computer Vision Springer, 2014, S. 834-849

EBERLI, Daniel ; SCARAMUZZA, Davide ; WEISS, Stephan ; SIEG-
WART, Roland: Vision based position control for MAVs using one
single circular landmark. In: Journal of Intelligent €& Robotic Sys-
tems 61 (2011), Nr. 1-4, S. 495-512



[FCC15)

|[FCDS15a]

[FCDS15b|

[FIQBMT13]

[FPS14]

[GISMCMJ14]

[GLU12]

[GOBGJ16]

81

Fu, Changhong ; CARRIO, Adrian ; CAMPOY, Pascual: Efficient
visual odometry and mapping for Unmanned Aerial Vehicle using
ARM-based stereo vision pre-processing system. In: 2015 Interna-
tional Conference on Unmanned Aircraft Systems, ICUAS 2015,
2015, S. 957-962

FORSTER, Christian ; CARLONE, Luca ; DELLAERT, Frank ;
SCARAMUZZA, Davide: IMU preintegration on manifold for ef-
ficient visual-inertial maximum-a-posteriori estimation. In: Pro-
ceedings of Robotics: Science and Systems Georgia Institute of
Technology, 2015, S. 6-15

FORSTER, Christian ; CARLONE, Luca ; DELLAERT, Frank ;
SCARAMUZZA, Davide: On-manifold preintegration theory for fast
and accurate visual-inertial navigation. In: IEEFE Transactions on
Robotics (2015), S. 1-18

FE1, Wang ; JIN-Q1ANG, CUI ; BEN-MEIL, CHEN ; Tong, H L.:
A comprehensive UAV indoor navigation system based on vision
optical flow and laser FastSLAM. In: Acta Automatica Sinica 39
(2013), Nr. 11, S. 1889-1899

FORSTER, Christian ; P1zzoLi, Matia ; SCARAMUZZA, Davide:
SVO: Fast semi-direct monocular visual odometry. In: Proceed-

ings - IEEE International Conference on Robotics and Automa-
tion, 2014, S. 15-22

GARRIDO-JURADO, S. ; SALINAS, R. M. ; MADRID-CUEVAS, F.J.
; MARIN-JIMENEZ, M.J.: Automatic generation and detection
of highly reliable fiducial markers under occlusion. In: Pattern
Recognition 47 (2014), Nr. 6, S. 2280 — 2292

GEIGER, Andreas ; LENZ, Philip ; URTASUN, Raquel: Are we
ready for autonomous driving? the KITTI vision benchmark suite.
In:  Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2012, S. 3354-3361

GOMEZ-OJEDA, Ruben ; BRIALES, Jesus ; GONZALEZ-JIMENEZ,
Javier: PL-SVO: Semi-direct monocular visual odometry by com-

bining points and line segments. In: Int. Conf. on Intelligent
Robots and Systems (IROS) IEEE/RSJ, 2016, S. 4211-4216



82

[GZS11]

[HFB16]

[HMTP13]

[Hor87]

[HS8S)]

[HS97]

[HZ03]

[1A99)]

[KDB17]

[KESL17]

[KGL10]

APPENDIX D. BIBLIOGRAPHY

GEIGER, Andreas ; ZIEGLER, Julius ; STILLER, Christoph: Stere-
oScan: Dense 3d reconstruction in real-time. In: IEEFE Intelligent

Vehicles Symposium, Proceedings, 2011, S. 963-968

HorLzMANN, Thomas ; FRAUNDORFER, Friedrich ; BISCHOF,
Horst: Direct stereo visual odometry based on lines. In: Pro-
ceedings of the 11th International Joint Conference on Computer
Vision, Imaging and Computer Graphics Theory and Applications,
2016, 2016, S. 1-11

HONEGGER, Dominik ; MEIER, Lorenz ; TANSKANEN, Petri ;
POLLEFEYS, Marc: An open source and open hardware embedded
metric optical flow cmos camera for indoor and outdoor applica-
tions. In: Robotics and Automation (ICRA), 2013 IEEE Interna-
tional Conference on IEEE, 2013, S. 1736-1741

HORN, Berthold K.: Closed-form solution of absolute orientation
using unit quaternions. In: JOSA A 4 (1987), Nr. 4, S. 629-642

HARRIS, Chris ; STEPHENS, Mike: A combined corner and edge
detector. In: Alvey wvision conference Bd. 15 Citeseer, 1988, S.
10-5244

HARTLEY, Richard I. ; STURM, Peter: Triangulation. In: Com-
puter vision and image understanding 68 (1997), Nr. 2, S. 146-157

HARTLEY, Richard ; ZISSERMAN, Andrew: Multiple view geome-
try in computer vision. Cambridge university press, 2003

IRANI, Michal ; ANANDAN, P: About direct methods. In: Interna-
tional Workshop on Vision Algorithms Springer, 1999, S. 267277

KROMBACH, Nicola ; DROESCHEL, David ; BEHNKE, Sven: Com-
bining Feature-Based and Direct Methods for Semi-dense Real-
Time Stereo Visual Odometry. In: Intelligent Autonomous Sys-
tems 14: Proceedings of the 14th International Conference IAS-14.
Cham : Springer International Publishing, 2017, S. 855-868

KAsSYANOV, Anton ; ENGELMANN, Francis ; STUCKLER, Jorg ;
LEIBE, Bastian: Keyframe-based visual-inertial online SLAM with
relocalization. In: CoRR abs/1702.02175 (2017)

Ki1TT, Bernd ; GEIGER, Andreas ; LATEGAHN, Henning: Visual
odometry based on stereo image sequences with RANSAC-based



[KJRT12]

[KNS*14]

[KRDOS]|

[KSS08]

[LDIG11]

[LHO6]

ILKS1]

[LM13]

83

outlier rejection scheme. In: IEEE Intelligent Vehicles Symposium,
Proceedings, 2010, S. 486-492

KAEss, M. ; JOHANNSSON, H. ; ROBERTS, R. ; IrLA, V. ;
LEONARD, J. J. ; DELLAERT, F.: iSAM2: Incremental smoothing

and mapping using the Bayes tree. In: The International Journal
of Robotics Research 31 (2012), Nr. 2, S. 216-235

KLINGBEIL, Lasse ; NIEUWENHUISEN, Matthias ; SCHNEIDER,
Johannes ; ELING, Christian ; DROESCHEL, David ; HoLz, Dirk
; LABE, Thomas ; FORSTNER, Wolfgang ; BEHNKE, Sven ;
KUHLMANN, Heiner: Towards autonomous navigation of an UAV-
based mobile mapping system. In: Proc. of Int. Conf. on Machine
Control & Guidance (MCG), 2014, S. 136-147

KAESS, Michael ; RANGANATHAN, Ananth ; DELLAERT, Frank:

iSAM: Incremental smoothing and mapping. In: IEEE Transac-
tions on Robotics 24 (2008), Nr. 6, S. 1365-1378

KELLY, Jonathan ; SARIPALLI, Srikanth ; SUKHATME, Gaurav S.:
Combined visual and inertial navigation for an unmanned aerial
vehicle. In: Springer Tracts in Advanced Robotics Bd. 42, 2008,
S. 255264

LOVEGROVE, Steven ; DAVISON, Andrew J. ; IBANEZ-GUZMAN,
Javier: Accurate visual odometry from a rear parking camera. In:
Intelligent Vehicles Symposium (IV), 2011 IEEE TEEE, 2011, S.
788-793

L1, Hongdong ; HARTLEY, Richard: Five-point motion estima-
tion made easy. In: Pattern Recognition, 2006. ICPR 2006. 18th
International Conference on Bd. 1 IEEE, 2006, S. 630633

Lucas, Bruce D. ; KANADE, Takeo: An Iterative Image Regis-
tration Technique with an Application to Stereo Vision. In: Pro-
ceedings of the Tth International Joint Conference on Artificial
Intelligence, IJCAI °81, Vancouver, BC, Canada, August 24-28,
1981, 1981, S. 674679

L1, Mingyang ; MOURIKIS, Anastasios I.: High-precision, consis-
tent EKF-based visual-inertial odometry. In: The International
Journal of Robotics Research 32 (2013), Nr. 6, S. 690-711



84

[Low99)

[MAMT15]

[MAT16]

[Nis04]

[NLD11]

[NNB04|

[NRB*14]

[PPFM15]

[PSLDLP*16]

APPENDIX D. BIBLIOGRAPHY

LowEg, David G.: Object recognition from local scale-invariant
features. In: Computer wision, 1999. The proceedings of the sev-
enth IEEE international conference on Bd. 2 Teee, 1999, S. 1150—
1157

MUR-ARTAL, Raul ; MONTIEL, Jose Maria M. ; TARDOS, Juan D.:
ORB-SLAM: a versatile and accurate monocular SLAM system.
In: IEEFE Transactions on Robotics 31 (2015), Nr. 5, S. 1147-1163

MUR-ARTAL, Raul ; TARDOS, Juan D.: ORB-SLAM2: an open-
source SLAM system for monocular, stereo and RGB-D cameras.
In: arXiv preprint arXiv:1610.06475 (2016)

NISTER, David: An efficient solution to the five-point relative pose
problem. In: IEFEFE transactions on pattern analysis and machine
intelligence 26 (2004), Nr. 6, S. 756-770

NEWCOMBE, Richard A. ; LOVEGROVE, Steven J. ; DAVISON,
Andrew J.: DTAM: Dense tracking and mapping in real-time. In:
Computer Vision (ICCV), 2011 IEEE International Conference
on TEEE, 2011, S. 2320-2327

NISTER, David ; NARODITSKY, Oleg ; BERGEN, James: Visual
odometry. In: Computer Vision and Pattern Recognition, 200.
CVPR 200/. Proceedings of the 2004 IEEE Computer Society Con-
ference on Bd. 1 Teee, 2004, S. T-1

Nikoric, Janosch ; REHDER, Joern ; BURRI, Michael ; GOHL,
Pascal ; LEUTENEGGER, Stefan ; FURGALE, Paul T. ; SIEGWART,
Roland: A synchronized visual-inertial sensor system with FPGA
pre-processing for accurate real-time SLAM. In: Robotics and Au-
tomation (ICRA), 2014 IEEFE International Conference on IEEE,
2014, S. 431-437

PERSSON, Mikael ; PicciNIi, Tommaso ; FELSBERG, Michael ;
MESTER, Rudolf: Robust stereo visual odometry from monocular
techniques. In: Intelligent Vehicles Symposium (IV), 2015 IEEE
IEEE, 2015, S. 686-691

PESTANA, Jests ; SANCHEZ-LOPEZ, Jose L. ; DE LA PUENTE,
Paloma ; CARRIO, Adrian ; CAMPOY, Pascual: A vision-based
quadrotor multi-robot solution for the indoor autonomy challenge
of the 2013 international micro air vehicle competition. In: Journal
of Intelligent € Robotic Systems 84 (2016), Nr. 1-4, S. 601-620



[RDO6]

[RPD10]

[RRKB11]

[SCG13]

[SEET12]

[SF11]

[SLFB+16]

[SMRO7]

SS02]

85

ROSTEN, Edward ; DRUMMOND, Tom: Machine learning for high-
speed corner detection. In: European conference on computer vi-
ston Springer, 2006, S. 430-443

ROSTEN, Edward ; PORTER, Reid ; DRUMMOND, Tom: Faster
and better: A machine learning approach to corner detection. In:
IEEFE transactions on pattern analysis and machine intelligence

32 (2010), Nr. 1, S. 105-119

RUBLEE, Ethan ; RABAUD, Vincent ; KONOLIGE, Kurt ; BRAD-
sKI, Gary: ORB: An efficient alternative to SIFT or SURF. In:
Computer Vision (ICCV), 2011 IEEE International Conference
on TEEE, 2011, S. 2564-2571

SONG, Shiyu ; CHANDRAKER, Manmohan ; GUEST, Clark C.:
Parallel, real-time monocular visual odometry. In: Robotics
and Automation (ICRA), 2013 IEEE International Conference on
IEEE, 2013, S. 4698-4705

STURM, Jiirgen ; ENGELHARD, Nikolas ; ENDRES, Felix ; BUR-
GARD, Wolfram ; CREMERS, Daniel: A benchmark for the evalua-
tion of RGB-D SLAM systems. In: 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems IEEE, 2012, S. 573~
580

SCARAMUZZA, Davide ; FRAUNDORFER, Friedrich: Visual odom-
etry : Part I. The first 30 years and fundamentals. In: IEFE
Robotics € Automation Magazine 18 (2011), Nr. 4, S. 80-92

SANCHEZ-LOPEZ, Jose L. ; FERNANDEZ, Ramén A S. ; BAVLE,
Hriday ; SAMPEDRO, Carlos ; MOLINA, Martin ; PESTANA, Jesus
; CAMPOY, Pascual: Aerostack: An architecture and open-source
software framework for aerial robotics. In: Unmanned Aircraft
Systems (ICUAS), 2016 International Conference on IEEE, 2016,
S. 332-341

SILVEIRA, Geraldo ; MALIS, Ezio ; RIVES, Patrick: An efficient
direct method for improving visual SLAM. In: Robotics and Au-
tomation, 2007 IEEE International Conference on IEEE, 2007, S.
4090-4095

STRELOW, Dennis ; SINGH, Sanjiv: Optimal motion estimation
from visual and inertial measurements. In: Applications of Com-



86

ISSA13)

ST94]

[Sze10]

[TGL*10]

[TK91]

[TMHF99]

[UESC16]

[WO16]

[Woo07|

APPENDIX D. BIBLIOGRAPHY

puter Vision, 2002.(WACV 2002). Proceedings. Sizth IEEE Work-
shop on IEEE, 2002, S. 314-319

SIRTKAYA, Salim ; SEYMEN, Burak ; ALATAN, A A.: Loosely
coupled kalman filtering for fusion of visual odometry and inertial
navigation. In: Information Fusion (FUSION), 2013 16th Inter-
national Conference on IEEE, 2013, S. 219-226

SHI, Jianbo ; TowmaAsi, C.: Good features to track. In: 199/
Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, 1994, S. 593-600

SzELISKI, Richard: Computer vision : Algorithms and applica-
tions. London; New York : Springer Science & Business Media,
2010

TARDIF, Jean-Philippe ; GEORGE, Michael ; LAVERNE, Michel
: KELLY, Alonzo ; STENTZ, Anthony: A new approach to
vision-aided inertial navigation. In: Intelligent Robots and Sys-
tems (IROS), 2010 IEEE/RSJ International Conference on IEEE,
2010, S. 41614168

Tomasi, Carlo ; KANADE, Takeo: Detection and tracking of

point features. School of Computer Science, Carnegie Mellon Univ.
Pittsburgh, 1991 (CMU-CS-91-132). — Research report

TRrRIGGS, Bill ; McLAUCHLAN, Philip F. ; HARTLEY, Richard I.
; F1TZGIBBON, Andrew W.: Bundle adjustment—a modern syn-
thesis. In: International workshop on wvision algorithms Springer,
1999, S. 298-372

USENKO, Vladyslav ; ENGEL, Jakob ; STUCKLER, Jorg ; CRE-
MERS, Daniel: Direct visual-inertial odometry with stereo cam-
eras. In: Int. Conf. on Robotics and Automation, 2016, S. 1885—
1892

WANG, John ; OLSON, Edwin: AprilTag 2: Efficient and robust
fiducial detection. In: Intelligent Robots and Systems (IROS),
2016 IEEE/RSJ International Conference on IEEE, 2016, S.
4193-4198

WoODMAN, Oliver J.: An introduction to inertial navigation /
University of Cambridge, Computer Laboratory. 2007 (UCAM-
CL-TR-696). — Research report



[WW13]

[YHGD14]

[ZDFLO5]

[ZKS14]

87

WiTT, Jonas ; WELTIN, Uwe: Robust stereo visual odometry
using iterative closest multiple lines. In: 2013 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, Tokyo,
Japan, November 3-7, 2013, IEEE, 2013, S. 4164-4171

YANHUA, Jiang ; HUIYAN, Chen ; GUANGMING, Xiong ; DAVIDE,
Scaramuzza: ICP stereo visual odometry for wheeled vehicles
based on a 1DOF motion prior. In: 2014 IEEFE International
Conference on Robotics and Automation (ICRA), IEEE, 2014, S.
585 — 592

ZHANG, Zhengyou ; DERICHE, Rachid ; FAUGERAS, Olivier ; LU-
ONG, Quang-Tuan: A robust technique for matching two un-
calibrated images through the recovery of the unknown epipolar
geometry. In: Artificial intelligence 78 (1995), Nr. 1-2, S. 87-119

ZHANG, Ji ; KAESS, Michael ; SINGH, Sanjiv: Real-time depth
enhanced monocular odometry. In: 201/ IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems IEEE, 2014,
S. 4973-4980



	Introduction
	State of the Art
	Goals of the Thesis
	Outline

	Camera Geometry
	Camera Model
	Epipolar Geometry
	Sparse 3D Reconstruction from Two Views

	Feature Detection, Matching, and Tracking
	FAST Corner Detector
	Feature Bucketing
	Rotated BRIEF Feature Descriptor
	Constrained Feature Matching
	Feature Tracking

	Motion Estimation for Stereo Visual Odometry
	Nonlinear Optimization
	Problem Definition
	Visual Motion Initialization
	Cost Functions for Visual Motion Estimation

	IMU Preintegration on a Manifold
	Special Orthogonal Group SO(3)
	Characteristics of MEMS Gyroscopes
	Naive Gyroscope Attitude Tracking
	Gyroscope Preintegration

	Stereo Visual-Inertial Odometry for UAVs
	Stereo Visual-Inertial Odometry Algorithm
	Aerostack Framework
	Aerostack Integration

	Evaluation
	Datasets
	Error Measurements
	Accuracy on KITTI Datasets
	Influence of the Gyroscope
	Runtime Evaluation

	Conclusion
	KITTI Odometry Benchmark
	List of Tables
	List of Figures
	Bibliography

